Direct Testimony and Schedules John M. Goodenough

Before the Minnesota Public Utilities Commission State of Minnesota

In the Matter of the Application of Northern States Power Company for Authority to Increase Rates for Natural Gas Service in Minnesota

> Docket No. G002/GR-25-356 Exhibit___(JMG-1)

Gas Customer and Throughput Forecast

October 31, 2025

Table of Contents

1.	1	
II.	Overview	2
III.	Customer, Sales, and Throughput Trends	4
IV.	2026 Test Year Customer and Throughput Forec	asts 9
V.	Sales Forecast True-Up Proposal	14
VI.	Forecasting Methodology	14
	A. Statistically Modeled Forecasts	19
	B. Normalization of Sale Forecast	22
	C. Data Preparation	25
	D. Unbilled Sales	26
	E. Calendar-Month Sales Derivation	27
VII.	Compliance Requirements	29
VI.	Conclusion	31
	Schedules	
Statemen	nt of Qualifications	Schedule 1

Schedule 2

Schedule 3

Schedule 4

Schedule 5

Definition of Terms

2026 Forecast by Customer Class

Gas Customer Count Regression Models

Gas Sales Regression Models

1 I. INTRODUCTION AND QUALIFICATIONS

\sim
''
_
_

- 3 Q. PLEASE STATE YOUR NAME AND OCCUPATION.
- 4 A. My name is John M. Goodenough. I am the Director of the Sales, Energy, and
- 5 Demand Forecasting department for Xcel Energy Services Inc. (XES), which is
- 6 the service company subsidiary of Xcel Energy Inc. (XEI).

7

- 8 Q. Please summarize your qualifications and experience.
- 9 A. I graduated from the University of Delaware with a Doctor of Philosophy
- degree in Economics. I also hold a Master of Arts degree in Economics from
- the University of Delaware and a Bachelor of Arts degree in Economics from
- the University of Maryland. I have worked in a sales forecasting role since 2007.
- I began my career in forecasting as a Regulatory Affairs Analyst at Pepco
- Holdings, Inc. from 2007–2010, followed by a role as a Principal Analyst at
- Baltimore Gas and Electric from 2010–2014. I worked as an Energy Markets
- Specialist at Southern California Edison from 2014–2016 and as a Manager,
- 17 Energy and Revenue Forecasting and Analysis at Arizona Public Service from
- 18 2016–2019. I started my prior role as Manager, Energy Forecasting for Xcel
- 19 Energy in October 2019 and was promoted to my current role as Director of
- Sales, Energy, and Demand Forecasting in May 2022. My statement of
- qualifications is included as Exhibit___(JMG-1), Schedule 1.

- 23 Q. What is the purpose of your testimony in this proceeding?
- 24 A. I support the forecast of natural gas customers and throughput for Northern
- 25 States Power Company Minnesota (NSPM or the Company), doing business
- as Xcel Energy, for the test year period of January 1, 2026 through December
- 27 31, 2026. This forecast forms the basis for the Company's revenue forecast in

1		this proceeding. I also support the Company's proposal to use actual 2026
2		weather normalized sales data for purposes of setting rates for the 2026 test
3		year.
4		
5		II. OVERVIEW
6		
7	Q.	PLEASE SUMMARIZE YOUR TESTIMONY.
8	Α.	My testimony presents the natural gas customer count and throughput forecast
9		for the 2026 test year. The Company projects 2026 total throughput to decrease
10		by 2.1 percent from 2024 levels of 125,425,736 dekatherms (Dkt) to
11		122,792,367 Dkt due primarily to a decrease in Interdepartmental transport
12		volumes. The number of customers are expected to increase by 1.5 percent over
13		the same period. My testimony describes the methodology used to develop this
14		forecast as well as the weather normalization of the sales forecast, the
15		preparation of data used in the forecasting process, how unbilled and calendar
16		month sales are calculated, and adjustments made to the test year forecast. As I
17		discuss, the Company's forecast is based on sound statistical methodologies and
18		provides a reasonable estimate of 2026 Dkt throughput and customer counts,
19		supports the Company's revenue projections.
20		
21		While I support the reasonableness of the 2026 sales forecast for purposes of
22		setting rates in this proceeding, the Company proposes in this case to determine
23		the test year 2026 revenue deficiency based on actual weather normalized sales
24		and customer counts in 2026, with final base rates for the test year set using
25		actual weather normalized sales and customers counts for 2026. This proposed
26		sales-true up is consistent with the approach that was approved by the

1		Commission in the Company's two most recent natural gas rate cases, Docket
2		Nos. G002/GR-21-678 and G002/GR-23-413.
3		
4	Q.	PLEASE EXPLAIN WHAT THE TERM "THROUGHPUT" MEANS.
5	Α.	The Company provides both gas sales and transportation services. Gas sales
6		include customers who purchase their natural gas supply from the Company.
7		Gas Transportation customers purchase their gas from third-party suppliers,
8		and that gas is then shipped across the Company's distribution system.
9		Throughput refers to the total volume of gas that flows through the Company's
10		distribution system, including both gas sold by the Company and gas
11		transported on behalf of others.
12		
13	Q.	How are customer and throughput forecasts used in this
14		PROCEEDING?
15	Α.	The customer and throughput forecasts are used to calculate the following:
16		1) The monthly and annual natural gas supply requirements;
17		2) Test year revenue under present rates; and
18		3) Test year revenue under proposed rates.
19		
20	Q.	PLEASE EXPLAIN THE IMPORTANCE OF ACCURATE CUSTOMER AND
21		THROUGHPUT FORECASTS IN A RATE CASE PROCEEDING.
22	Α.	In a rate case proceeding, accurate customer and throughput forecasts ensure
23		just and reasonable rates for customers by allowing the Company to fairly and
24		accurately recover its costs, no more and no less. In addition, forecasts are used
25		for purposes other than setting rates, such as gas capacity planning, where it is
26		important that the Company has sufficient resources to meet customer needs
27		over time.

1	Q.	HAS THE COMPANY COMPLIED WITH ALL PREFILING COMPLIANCE		
2		REQUIREMENTS RELATED TO THE CUSTOMER AND THROUGHPUT FORECAST IN		
3		THIS PROCEEDING?		
4	Α.	Yes. In Docket Nos. No. E002/GR-08-1065 and E002/GR-10-971, the		
5		Minnesota Public Utilities Commission (Commission) ordered the Company to		
6		make a filing providing the data used in its test year sales forecasts at least 30		
7		days prior to filing a general rate case. The Company complied with this		
8		requirement by filing the required information on September 26, 2025 in this		
9		docket. The information was e-filed through the Commission's electronic filing		
10		system. I discuss the compliance requirements in more detail in Section VII of		
11		my testimony.		
12				
13	Q.	ARE THERE DEFINED TERMS YOU PLAN TO USE IN YOUR TESTIMONY?		
14	Α.	Yes. The definitions of terms that are included in my testimony are provided in		
15		Exhibit(JMG-1), Schedule 2.		
16				
17		III. CUSTOMER, SALES, AND THROUGHPUT TRENDS		
18				
19	Q.	WHAT IS THE PURPOSE OF THIS SECTION OF YOUR TESTIMONY?		
20	Α.	The purpose of this section of my Direct Testimony is to provide relevant		
21		background regarding the Company's natural gas service territory, natural gas		
22		customer categories, and historical customer and Dkt sales and throughput		
23		trends from 2019 to 2024.		

1	Q.	What geographical area does the Company's natural gas			
2		THROUGHPUT FORECAST REFLECT?			
3	Α.	My Direct Testimony and exhibits reflect natural gas throughput and customers			
4		in Xcel Energy's Minnesota service territory.			
5					
6	Q.	Is the Company's gas service territory the same as its electric service			
7		TERRITORY?			
8	Α.	No. The Company's Minnesota gas service territory is smaller than the electric			
9		service territory. As of December 2024, the Company had about 492,000 gas			
10		customers and 1.38 million electric customers in the State of Minnesota.			
11					
12	Q.	PLEASE DESCRIBE THE CUSTOMER CATEGORIES INCLUDED IN THE COMPANY'S			
13		NATURAL GAS CUSTOMER AND THROUGHPUT FORECASTS.			
14	Α.	The following customer classes comprise the Company's gas forecast:			
15		Residential			
16		• Residential – residential firm service.			
17		Commercial			
18		• Small Commercial – commercial and industrial firm service having annual			
19		usage of less than 600 Dkt.			
20		• Large Commercial – commercial and industrial firm service having annual			
21		usage of 600 Dkt or more.			
22		Demand			
23		• Small Demand – firm commercial and industrial service for demand-billed			
24		customers having a maximum peak day demand of less than 50 Dkt.			
25		• Large Demand – firm commercial and industrial service for demand-billed			
26		customers having a maximum peak day demand of 50 Dkt or more.			

1	Interruptible
2	• Small Volume Interruptible – interruptible service to commercial and
3	industrial customers having a maximum peak day demand less than 200
4	Dkt.
5	• Medium Volume Interruptible – interruptible service to commercial and
6	industrial customers having a maximum peak day demand greater than
7	200 Dkt and less than 5,000 Dkt.
8	• Large Volume Interruptible – interruptible service to commercial and
9	industrial customers having a maximum peak day demand greater than
10	or equal to 5,000 Dkt.
11	• Interdepartmental Sales – natural gas sales made internally to Xcel Energy
12	facilities for purposes other than the generation of electricity, such as
13	heating Service Centers.
14	• Generation Sales – natural gas sales made internally to Xcel Energy facilities
15	for the generation of electricity.
16	Transportation
17	• Firm Transportation – firm transportation service for customers whose
18	peak daily demand requirement is 50 Dkt or more per meter location.
19	• Interruptible Transportation – interruptible transportation service with rate
20	based on peak day demand: Small – less than 200 Dkt; Medium – more
21	than 200 Dkt and less than 5,000 Dkt; Large – more than 5,000 Dkt.
22	• Negotiated Transportation – transportation service for
23	commercial/industrial customers for whom physical bypass of the
24	Company's distribution system is economically feasible and practical.
25	• Interdepartmental Transportation – firm transportation service to Xcel

Energy facilities for the generation of electricity.

Q. WHAT TRENDS ARE YOU SEEING IN THE COMPANY'S CUSTOMER COUNTS FROM

	-	
2		2019 TO 2024?
3	Α.	The Company has seen moderate growth in the number of Minnesota natural
4		gas customers over the past five years. The total number of customers increased
5		at an average annual rate of 1.1 percent from 2019 through 2024. Residential
6		customers, which accounted for 92.5 percent of total customers in 2024, have
7		averaged 1.2 percent growth per year over the past five years.
8		
9	Q.	WHAT FACTORS HAVE BEEN DRIVING THE GROWTH IN RESIDENTIAL CUSTOMER
10		COUNTS SINCE 2019?
11	Α.	Residential customer counts are highly correlated with population and
12		households. The moderate growth rate in the number of Residential customers
13		since 2019 is the result of the growth in population and households over this
14		same time period.
15		
16	Q.	What trends are you seeing in the Company's natural gas
17		THROUGHPUT FROM 2019 TO 2024?
18	Α.	The Company's total natural gas throughput has decreased on average 0.05
19		percent per year from 2019 to 2024, after normalizing for weather. Total Retail
20		sales have decreased an average of 0.5 percent per year. The largest area of
21		growth has been in the Commercial sector, with total Commercial volumes
22		increasing an average of 1.1 percent per year during this time. The average
23		annual percent change in customers and throughput by customer class from
24		2019 through 2024 is shown in Table 1.

Table 1

Average Annual Percent Change in Customers and Throughput

Customer Class		Annual Change 019 to 2024	2024 % of Total	
Customer Class	Number of Customers	Weather Normalized Throughput	Throughput	
Residential	1.2%	0.1%	30.4%	
Total Commercial	0.6%	1.1%	18.9%	
Total Demand	0.8%	-0.8%	2.3%	
Total Firm	1.1%	0.4%	51.5%	
Total Interruptible	-6.0%	-6.2%	6.4%	
Total Retail	1.1%	-0.5%	57.9%	
Total Transportation	1.6%	0.5%	42.1%	
Total	1.1%	-0.05%	100.0%	

3

4 Q. Please explain what types of customers are included in the Total

5 Transportation class?

6 A. The Total Transportation class includes Firm Transportation, Interruptible

7 Transportation, Negotiated Transportation, and Interdepartmental

Transportation. Due to the small number of customers in each of these classes,

I have combined them into the Total Transportation category in my Direct

Testimony.

11

8

9

12 Q. What factors contributed to the decrease in Gas Retail sales from

13 2019 TO 2024?

14 A. Declines in the Interruptible and Demand classes offset growth in Residential

and Commercial classes, leading to overall declines in Retail sales from 2019 to

16 2024.

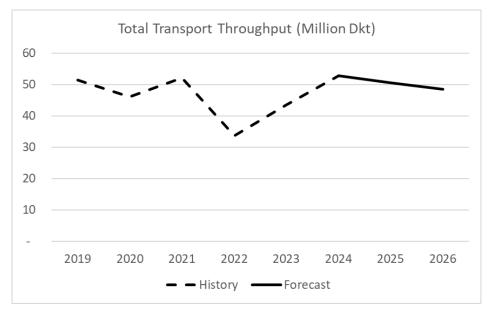

1 2 3		IV. 2026 TEST YEAR CUSTOMER AND THROUGHPUT FORECAST
4	Q.	WHAT IS THE PURPOSE OF THIS SECTION OF YOUR TESTIMONY?
5	A.	The purpose of this section of my Direct Testimony is to provide the
6		Company's forecast for the 2026 test year for customer counts and total
7		throughput for the various customer classes. The customer and gas throughput
8		forecasts are used by Company witness Michelle M. Terwilliger to calculate the
9		retail revenue for the 2026 test year.
10		
11	Q.	PLEASE SUMMARIZE THE COMPANY'S CUSTOMER COUNT AND THROUGHPUT
12		FORECAST FOR THE 2026 TEST YEAR.
13	Α.	Our forecast indicates that the overall number of customers is expected to
14		increase during the 2026 test year and the total natural gas throughput is
15		expected to decrease, as shown in Figure 1 below. Specifically, the Company
16		projects 2026 total throughput to decrease by 0.3 percent from projected 2025
17		levels of 123,117,992 Dkt to 122,792,367 Dkt due primarily to a decrease in
18		Interdepartmental Transportation volumes. Customers are expected to increase
19		by 0.7 percent over the same period. Exhibit(JMG-1), Schedule 3
20		summarizes monthly Dkt and number of customers for each customer class for
21		the 2026 test year.

Figure 1

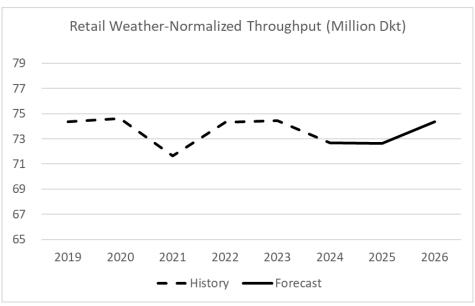

- 4 Q. GENERALLY SPEAKING, TO WHAT DO YOU ATTRIBUTE THIS DECREASE IN GAS
 5 THROUGHPUT FOR 2025 AND 2026?
- 6 Α. The projected decrease in throughput is a result of lower gas Transportation 7 volumes as shown in Figure 2, which accounted for about 42 percent of the Company's natural gas throughput in 2024. Total Transportation volumes are 8 9 expected to decrease 4.3 percent in 2025 and show a further decrease of 4.1 10 percent in 2026 due primarily to projected decreases in gas used for electric 11 generation. As shown in Figure 3, Retail sales are expected to decrease slightly in 2025 and then increase in 2026, with 2026 Retail sales returning to 2022 levels. 12 13 The Retail sales growth is primarily driven by the Residential and Commercial 14 classes.

Figure 2

2

4 Figure 3

5

7

8

9

A more detailed discussion of the forecast results is provided in this section of my testimony. The forecast methodology is discussed in Section VI of my testimony.

1	Q.	How does the 2026 test year natural gas customer growth compare
2		WITH HISTORICAL CUSTOMER GROWTH?
3	Α.	As shown in Table 1 above, customer growth has averaged 1.1 percent per year
4		from 2019 through 2024. The average annual increase in number of customers
5		over this time was 5,291 customers per year. From 2024 to 2026, the number
6		of customers is expected to increase by a total of 7,203 customers, or about
7		3,600 customers (0.7 percent) per year.
8		
9	Q.	How does the 2026 test year natural gas throughput compare with
10		2024 WEATHER NORMALIZED GAS THROUGHPUT?
11	Α.	Total natural gas Retail sales and Transportation volumes are expected to
12		decrease 2.1 percent during the 2026 test year compared to 2024. The main
13		driver of this decrease is an 8.2 percent decrease in Transportation volumes.
14		Total firm sales are expected to increase 2.6 percent in the 2026 test year
15		compared to 2024. Within firm sales, Residential sales are expected to increase
16		3.3 percent while Commercial sales are expected to increase 1.5 percent.
17		
18		Table 2 provides the Company's weather normalized Retail sales and
19		Transportation volumes by customer class for 2024 and the test year 2026, and
20		the growth rate for 2026 as compared to 2024.

Table 2 Weather Normalized Throughput by Class (Dkt)

Customer Class	2024 Throughput	2026 Throughput	Percent Change	Average Annual Percent Change
Residential	38,162,312	39,424,795	3.3%	1.6%
Total Commercial	23,666,691	24,016,129	1.5%	0.7%
Total Demand	2,823,692	2,875,341	1.8%	0.9%
Total Firm	64,652,694	66,316,264	2.6%	1.3%
Total Interruptible	8,022,056	8,034,956	0.2%	0.1%
Total Retail	72,674,751	74,351,221	2.3%	1.1%
Total Transportation	52,750,985	48,441,146	-8.2%	-4.2%
Total	125,425,736	122,792,367	-2.1%	-1.1%

3

- $4\,$ $\,$ Q. What is driving the decrease in Transportation volumes in the $2026\,$
- 5 TEST YEAR?
- 6 A. The decrease in Total Transportation volumes is driven by a decrease in
- 7 Interdepartmental Transportation volumes, which are forecasted to decrease by

8 [PROTECTED DATA BEGINS

9 **PROTECTED DATA ENDS]** in 2026 as compared to 2024.

- 11 Q. What is driving the increase in Residential sales in the 2026 test year 12 As compared to 2024?
- 13 A. The increase in Residential sales in 2026 is driven by two main factors. First, the
- number of Residential customers is expected to grow by 1.8 percent from 2024
- to 2026. Second, residential use-per-customer is expected to increase from 2024
- levels.

1		V. SALES FORECAST TRUE-UP PROPOSAL
2		
3	Q.	IS THE COMPANY PROPOSING A TEST YEAR SALES TRUE-UP IN THIS PROCEEDING
4		TO USE ACTUAL WEATHER NORMALIZED SALES DATA FOR SETTING RATES FOR
5		THE 2026 TEST YEAR?
6	Α.	Yes. Consistent with the Commission-approved settlement agreements in the
7		Company's last two gas rate cases (Docket Nos. G002/GR-21-678 and
8		G002/GR-23-413), the Company proposes to use actual weather normalized
9		sales data for setting rates for the 2026 test year. The sales true-up would use
10		the same methodology employed by the Company in its last gas rate case. In
11		particular, the Company proposes to update the test year revenue deficiency
12		based on actual weather normalized sales and customer counts in 2026, with
13		final base rates for the test year set using actual weather normalized sales and
14		customers counts for 2026.
15		
16		VI. FORECASTING METHODOLOGY
17		
18	Q.	PLEASE DESCRIBE IN GENERAL TERMS THE METHODS USED TO FORECAST
19		THROUGHPUT AND CUSTOMER COUNTS FOR THIS RATE CASE.
20	Α.	The 2026 test year throughput forecast was completed in the summer of 2025
21		and was based on actual customers and throughput through May 2025. The
22		Sales, Energy, and Demand Forecasting department coordinated the gas
23		throughput and customer forecast preparation using a combination of
24		econometric and statistical forecasting techniques and analyses to develop the
25		throughput and customer forecasts.

1	Q.	How were the sales forecasts developed for the Residential,
2		COMMERCIAL, SMALL VOLUME INTERRUPTIBLE, AND MEDIUM VOLUME
3		INTERRUPTIBLE CUSTOMER CLASSES?
4	Α.	Regression models were developed as the foundation for the sales forecasts of
5		the Residential, Small Commercial, Large Commercial, Small Volume
6		Interruptible, and Medium Volume Interruptible customer classes. The
7		regression models were developed using the Metrix ND¹ software program
8		which is commonly used in the utility industry. Regression techniques are very
9		well-known, proven methods of forecasting and are commonly accepted by
10		forecasters throughout the utility industry. This method provides reliable,
11		accurate projections; accommodates the use of predictor variables, such as
12		economic or demographic indicators and weather; and allows clear
13		interpretation of the model. The use of regression modeling is a standard
14		approach in the utility industry, and Xcel Energy has been using these types of
15		regression models since 1991.
16		
17		Monthly sales forecasts for these customer classes were developed based on
18		regression models designed to define a statistical relationship between the
19		historical sales and independent predictor variables such as economic and
20		demographic indicators, historical number of customers, and historical weather
21		(expressed in heating degree days (HDD)). The modeled relationships were
22		then simulated over the forecast period by assuming normal weather (expressed
23		in terms of 20-year-averaged HDD) and the projected levels of the other
24		independent predictor variables.

 1 Metrix ND 7.0, Copyright © 1997-2020, Itron, Inc., http://www.itron.com

1	Q.	DOES THE COMPANY USE BINARY VARIABLES IN THE REGRESSION MODELS?
2	Α.	Yes. Binary variables are used to help the models account for outliers or step
3		changes in the historical data associated with another variable. Generally, a
4		forecast is initially developed without any binary variables; they are added later
5		as deemed advisable to improve the overall model fit or monthly pattern of the
6		forecast. Binary variables have been included in both the Company's and the
7		Department's models used to develop sales and customer forecasts in prior rate
8		cases.
9		
10	Q.	WHAT PROCESS WAS USED TO FORECAST SALES AND VOLUMES IN THE
11		REMAINING CUSTOMER CLASSES?
12	Α.	In the Demand, Interdepartmental Sales, Large Volume Interruptible, Firm
13		Transportation, Interruptible Transportation, and Negotiated Transportation
14		classes, natural gas use per customer is high, the numbers of customers is small,
15		and the end uses are much more varied. For these customer classes, natural gas
16		sales volumes were forecasted based on an analysis of historical trends by
17		month. The test year throughput forecast for Interdepartmental Transportation
18		volumes was an output from the Company's electric production cost model.
19		The forecast for Generation Sales is a combination of output from the
20		Company's electric production cost model.
21		
22	Q.	WHAT IS THE COMPANY'S ELECTRIC PRODUCTION COST MODEL AND HOW IS IT
23		USED TO FORECAST GAS VOLUMES FOR A PORTION OF THE TRANSPORTATION
24		CLASS?
25	Α.	The model is PLEXOS, which simulates generation plant dispatch based on the
26		Company's electric forecast. The model then determines the amount of natural
27		gas used at the gas-fired plants based on their expected dispatch.

Q. WERE ANY VOLUMES ASSOCIATED WITH OFF-SYSTEM SALES INCLUDED IN THE

2		FORECAST?
3	Α.	No. Xcel Energy has no off-system sales; therefore, no such volumes were
4		included in the forecast.
5		
6	Q.	WHAT PROCESS WAS USED FOR FORECASTING THE NUMBER OF CUSTOMERS?
7	Α.	The number of customers by customer class for the Residential and Small
8		Commercial customer classes is forecasted using demographic data in
9		regression models. The number of customers for the remaining customer
10		classes is forecasted based on an analysis of historical trends. The historical
11		number of customers by class is derived from the Company's billing system.
12		
13	Q.	HOW MANY TRANSPORTATION CUSTOMERS ARE EXPECTED IN THE TEST YEAR?
14	Α.	There are expected to be a total of 29 Transportation customers in the 2026 test
15		year, including the four Xcel Energy facilities counted as Interdepartmental
16		Transportation customers. This is the same as the number of Transportation
17		customers in May 2025.
18		
19	Q.	WHAT IS THE SOURCE OF WEATHER DATA?
20	Α.	The weather data used in the forecast was obtained from the National Oceanic
21		and Atmospheric Administration (NOAA) Minneapolis-St. Paul International
22		Airport weather station. Eight temperature readings per day were obtained, and
23		the average daily temperature was determined by averaging the eight
24		temperature readings. HDD were calculated for each day by subtracting the
25		average daily temperature from 65 degrees Fahrenheit. For example, if the
26		average daily temperature was 45 degrees Fahrenheit, then 65 minus 45, or 20
27		HDD, were calculated for that day. If the average daily temperature was greater
		17 Docket No. C002/CP 25 356

1		than 65 degrees Fahrenheit, then that day recorded zero HDD. Normal daily
2		HDD were calculated by averaging 20 years of daily HDD using data from 2005
3		to 2024.
4		
5	Q.	WHAT WAS THE COMPANY'S SOURCE OF ECONOMIC AND DEMOGRAPHIC DATA?
6	A.	Historical and forecasted economic and demographic variables for Minnesota,
7		the Minneapolis-St. Paul metropolitan area, and the U.S. were obtained from
8		IHS Markit, a respected economic forecasting firm frequently relied on by
9		forecasting professionals. These variables include population and households.
10		This information is used to determine the historical relationship between
11		customers and sales, and economic and demographic measures. The Company
12		used the most current economic and demographic data available from IHS
13		Markit at the time of modeling.
14		
15	Q.	WHY DID YOU CHOOSE TO USE IHS MARKIT'S DATA RATHER THAN PUBLIC
16		SOURCES?
17	Α.	We prefer to use IHS Markit over public sources because IHS Markit provides
18		forecasts of various economic and demographic indicators, while the publicly-
19		available information is available only on a historical basis. The Company is not
20		purchasing historical data from IHS Markit but rather is paying for IHS Markit's
21		forecasting service. Obtaining this information from a third-party vendor also
22		mitigates any potential appearance of bias that might exist if the Company
23		developed its own economic and demographic forecasts.
24		
25	Q.	WHAT STEPS HAS THE COMPANY TAKEN TO VALIDATE IHS MARKIT'S DATA?
26	Α.	As part of the information provided to the Commission and the Department
27		30 days prior to filing this general rate case, we included documentation

1		snowing now the historical and forecasted economic and demographic variables
2		or indicators for each variable are calculated and derived. In addition, we
3		identified the original source of the data, and, whenever the data was available
4		via the internet compared the historical data provided by IHS Markit to the
5		original source data. In instances where the original source data and the data
6		provided by IHS Markit differed, we worked with IHS Markit to obtain
7		satisfactory explanations for the variances.
8		
9		A. Statistically Modeled Forecasts
10	Q.	PLEASE DESCRIBE THE REGRESSION MODELS AND ASSOCIATED ANALYSIS USED
11		IN XCEL ENERGY'S STATISTICAL PROJECTIONS OF SALES AND CUSTOMERS.
12	Α.	The regression models and associated analysis used in Xcel Energy's statistical
13		projections of sales are provided in Exhibit(JMG-1), Schedule 4, and the
14		regression models and associated analysis used in Xcel Energy's statistical
15		projections of customers are provided in Exhibit(JMG-1), Schedule 5.
16		These schedules include, by customer class, the models with their summary
17		statistics and output and descriptions for each variable included in the model.
18		
19	Q.	DID XCEL ENERGY EMPLOY VALIDITY TESTS OR OTHER TECHNIQUES TO
20		EVALUATE THE PLAUSIBILITY OF ITS QUANTITATIVE FORECASTING MODELS
21		AND SALES PROJECTIONS?
22	Α.	Yes. We used several quantitative and qualitative validity tests that are applicable
23		to regression analysis.
24		
25		The coefficient of determination (R-squared) test statistic is a measure of the
26		quality of the model's fit to the historical data. It represents the proportion of
27		the variation of the historical sales around their mean value that can be

attributed to the functional relationship between the historical sales and the explanatory variables included in the model. If the R-squared statistic is high, the model is explaining a high degree of the historical-sales variability. The regression models used to develop the sales forecasts demonstrate very high R-squared statistics, ranging between 0.915 and 0.997. The regression models used to develop the customer forecasts demonstrated very high R-squared statistics, ranging between 0.933 and 1.000.

The t-statistics of a variable indicates the degree of correlation between that variable's data series and the sales data series being modeled. The t-statistic is a measure of the statistical significance of each variable's individual contribution to the prediction model. Generally, to be considered statistically significant at the 90 percent confidence level, the absolute value of each t-statistic should be greater than 1.65. This standard was applied in the development of the regression models used to develop the sales forecast. However, including a variable with a lower level of significance is statistically acceptable and does not necessarily make the model invalid or result in an unreliable forecast. The final regression models used to develop the sales forecast tested satisfactorily under the 90 percent confidence level.

- Q. How else did the Company evaluate the reasonableness of its quantitative forecasting models and sales projections?
- A. We inspected each model for the presence of first order autocorrelation, as measured by the Durbin-Watson (DW) test statistic. Autocorrelation refers to the correlation of the model's error terms for different time periods. For example, an overestimate in one period is likely to lead to an overestimate in the succeeding period under the presence of first order autocorrelation. Thus,

when forecasting with a regression model, absence of autocorrelation between the residual errors is very important. The DW test statistic ranges between 0 and 4 and provides a measure to test for autocorrelation. In the absence of first order autocorrelation, the DW test statistic equals 2.0. With one exception, the final regression models used to develop the sales forecast tested satisfactorily for the absence of first order autocorrelation, as measured by the DW test statistic. The one exception was the model for Minnesota Residential customer counts, which did show some signs of autocorrelation. However, this model was still considered acceptable because (1) it has a high R-squared, (2) it includes an economically logical predictor, (3) it has a very low Mean Absolute Percentage Error (MAPE), (4) its t-statistics were all above 1.65, suggesting statistical significance at the 90 percent confidence level, and (5) the forecasted values appear reasonable.

Graphical inspection of each model's error terms (*i.e.*, actual less predicted) was used to verify that the models were not mis-specified, and that statistical assumptions pertaining to constant variance among the residual terms and their random distribution with respect to the predictor variables were not violated. Analysis of each model's residuals indicated that the residuals were homoscedastic (constant variance) and randomly distributed, indicating that the regression modeling technique was an appropriate selection for each customer class's sales that were statistically modeled.

The statistically modeled sales forecasts for each customer class have been reviewed for reasonableness as compared to the respective monthly sales history for that class. Graphical inspection reveals that the patterns of the forecast fit well with the respective historical patterns for each customer class. The annual

1		total forecast sales have been compared to their respective historical trends for
2		consistency. Similar qualitative tests for reasonableness and consistency have
3		been performed for the customer level projections.
4		
5	Q.	DID THE COMPANY ADJUST THE 2026 TEST YEAR FORECAST TO ACCOUNT FOR
6		FUTURE EXPECTED DEMAND-SIDE MANAGEMENT (DSM) IMPACTS?
7	Α.	No. In the 2017 Gas Utility Infrastructure Costs (GUIC) filing (Docket No
8		G002/M-16-891), the Commission directed the Company to remove an
9		adjustment for DSM energy impacts. Beginning with the 2018 GUIC Filing
10		(Docket No. G002/M-17-787), the Company has not included any DSM
11		impacts in its sales forecasts.
12		
13	Q.	DID THE COMPANY ADJUST THE FORECASTS FOR THE IMPACTS OF BENEFICIAL
14		ELECTRIFICATION?
15	Α.	Yes, the Residential and Commercial and Industrial forecasts were adjusted to
16		account for the expected impacts of beneficial electrification.
17		
18		B. Normalization of Sales Forecast
19	Q.	HOW DID XCEL ENERGY ADJUST ITS SALES FORECAST FOR THE INFLUENCE OF
20		WEATHER ON SALES?
21	Α.	Residential, Small Commercial, Large Commercial, Small Volume Interruptible
22		and Medium Volume Interruptible sales projections were developed through
23		the application of quantitative statistical models. For each of these classes, sales
24		were not weather adjusted prior to developing the respective statistical models
25		The respective regression models used to forecast sales included weather
26		measured in terms of HDD as an explanatory variable. In this way, the historical
27		weather impact on historical consumption for each class was modeled through

1		the respective coefficients for the HDD variable included in each class's model.
2		Forecasted sales were then projected by simulating the established statistical
3		relationships over the forecast horizon, assuming normal weather.
4		
5		Forecasts for the Demand, Large Volume Interruptible, Interdepartmental
6		Sales, Firm Transportation, Interruptible Transportation, and Negotiated
7		Transportation classes were developed using a trend modeling approach, and,
8		therefore, do not use HDD as an explanatory variable. With the exception of
9		the Demand class, these customers' primary use of gas is not for space heating,
10		and so many other factors contribute to these volumes. As a result, the weather
11		impact due to deviation from normal weather is indistinguishable from other
12		variables. The Demand class sales are correlated with HDD, but not with other
13		explanatory variables that could be used to develop a forecast, and, therefore, a
14		trend modeling approach was determined to be more appropriate.
15		
16	Q.	How was normal weather determined?
17	Α.	Normal daily weather was calculated based on the average of historical HDD
18		for the 20-year time period 2005 to 2024. Xcel Energy's method for calculating
19		normal weather using a 20-year period of actual data has been accepted by the
20		Commission in several previous rate cases. ² These normal HDD were related
21		to the forecasted billing month in the same manner as were the actual HDD.
22		
23	Q.	WHAT WAS XCEL ENERGY'S MEASURE OF WEATHER, AND WHAT WAS THE
24		SOURCE?

 2 Docket Nos. E002/GR-92-1185, G002/GR-97-1606, G002/GR-04-1511, E002/GR-05-1428, G002/GR-06-1429, E002/GR-08-1065, G002/GR-09-1153, E002/GR-10-971, E002/GR-12-961, E002/GR-13-868, E002/GR-15-826, E002/GR-19-564, E002/GR-20-273, E002/GR-21-630, G002/GR-21-678, and G002/GR-23-413.

Α.	As I explained previously, the measure of weather used was HDD, using a 65-
	degree temperature base. This information was obtained from NOAA, as
	measured at its Minneapolis-St. Paul International Airport weather station.
Q.	IS IT APPROPRIATE TO USE THE MINNEAPOLIS-ST. PAUL WEATHER STATION TO
	REPRESENT XCEL ENERGY'S MINNESOTA SERVICE TERRITORY?
Α.	Yes, it is. 75 percent of Xcel Energy's Minnesota gas customers reside within
	the 14-county Minneapolis-St. Paul metropolitan statistical area. An additional
	18 percent reside within approximately 100 miles of Minneapolis-St. Paul.
	The coefficients for the HDD variables included in each class's model were
	determined based on the historical relationship between sales throughout Xce
	Energy's Minnesota service territory and Minneapolis-St. Paul weather
	Therefore, the coefficients accurately reflect the distribution of customers
	geographically within the Minnesota service territory. Since this geographic
	distribution is not expected to change during the 2026 test year, it is appropriate
	to use this historical relationship and Minneapolis-St. Paul weather.
Q.	DID THE WEATHER REFLECT THE SAME BILLING-CYCLE DAYS AS THE SALES
	DATA?
Α.	Yes. The HDD were weighted by the number of times a particular day was
	included in a particular billing month. These weighted HDD were divided by
	the total billing-cycle days to arrive at average daily HDD for a billing month.
Q.	HOW DOES THE WEATHER NORMALIZATION METHODOLOGY USED IN THIS
	CASE COMPARE WITH THE METHODOLOGY USED PREVIOUSLY?
Α.	The methodology we are using for this case is the same as the final methodology
	Q. A. Q.

1		used in previous rate cases and GUIC filings. The weather response coefficients
2		and normal weather values have been updated based on more current actual
3		sales, customer counts, and weather, but no other changes have been made.
4		
5		C. Data Preparation
6	Q.	Please describe the data and data sources XCEL Energy used to
7		DEVELOP THE SALES AND CUSTOMER FORECASTS.
8	Α.	Historical billing-month sales and number of customers were obtained from
9		Xcel Energy's billing system reports, using monthly historical data from June
10		2010 through May 2025.
11		
12	Q.	WERE ANY ADJUSTMENTS MADE TO HISTORICAL SALES?
13	Α.	Yes. The Company has removed sales for [PROTECTED DATA BEGINS
14		PROTECTED DATA ENDS] which previously had
15		taken service under both the Medium Volume Interruptible and Negotiated
16		Transportation rates, but since May 2017 has taken all service under Negotiated
17		Transportation rates. The Company has removed sales from the Medium
18		Volume Interruptible class in order to not overstate the sales history for that
19		class. The Company has also removed [PROTECTED DATA BEGINS
20		PROTECTED DATA ENDS] sales from the Medium
21		Volume Interruptible class for the period of January 2012 to January 2017, due
22		to the erroneous billing for that customer in that period. The Company
23		removed [PROTECTED DATA BEGINS
24		PROTECTED DATA ENDS] sales from the Medium Volume Interruptible
25		class for the period of June 2010 to November 2021, after which sales go to
26		zero. The Company removed [PROTECTED DATA BEGINS
27		PROTECTED DATA ENDS] sales from the Medium

I		volume interruptible class for the period of December 2022 to May 2025.
2		[PROTECTED DATA BEGINS
3		PROTECTED DATA ENDS] took service under the Large Demand class
4		through November 2022, after which it moved under the Medium Volume
5		Interruptible class beginning December 2022. The sales were removed in order
6		to not overstate the forecast for this class. The Company removed
7		[PROTECTED DATA BEGINS
8		PROTECTED DATA ENDS] sales from the Large Demand class as well for
9		the period starting when the customer-level data was available, January 2017 to
10		November 2022. The sales were removed in order to not overstate the sales
11		history for this class. Finally, a reclassification of the Company's Commercial
12		customers occurred in September 2015. As a result, the historical sales used as
13		inputs to the Commercial regression models were adjusted for the period June
14		2010 through September 2015 by allocating a share of sales and customers to
15		Small and Large Commercial classes based on a continuation backwards of a
16		trend in the split between the two classes. This trend is calculated based on
17		historical shares beginning in September 2015, after the final reclassification.
18		The Company adjusted the Commercial sales in order to predict future sales
19		more accurately for these classes.
20 21		D. Unbilled Sales
22	Q.	CAN YOU EXPLAIN THE TERM "UNBILLED SALES"?
23	Α.	Yes. Xcel Energy reads gas meters each working day according to a meter-
24		reading schedule based on 21 billing cycles per billing month. Meters read early
25		in the month mostly reflect consumption that occurred during the previous
26		month. Meters read late in the month mostly reflect consumption that occurred
27		during the current month. The "billing-month" sales for the current month

1		reflect consumption that occurred in both the previous month and the current
2		month. Thus, billing-month sales lag calendar-month sales. Unbilled sales
3		reflect volumes of natural gas consumed in the current month that are not billed
4		to the customer until the succeeding month.
5		
6	Q.	WHAT IS THE PURPOSE OF THE UNBILLED SALES ADJUSTMENT?
7	Α.	The purpose is to align the projected revenues with the relevant projected
8		expenses, which have been estimated on a calendar-month basis.
9		
10	Q.	Is XCEL Energy reflecting unbilled revenue on its books for
11		ACCOUNTING AND FINANCIAL PURPOSES?
12	Α.	Yes. Xcel Energy adopted this practice during fiscal year 1992 and it has been
13		accepted by the Commission in all past rate cases.
14		
15	Q.	How were the estimated monthly net unbilled sales volumes
16		DETERMINED?
17	Α.	Xcel Energy determined its projected monthly net unbilled sales as the
18		difference between the estimated monthly calendar-month sales and the
19		projected billing-month sales. The projected billing-month sales were created
20		using the statistical models and other forecasting methods previously described
21		
22		E. Calendar-Month Sales Derivation
23	Q.	HOW WERE THE ESTIMATED MONTHLY CALENDAR-MONTH SALES
24		DETERMINED?
25	Α.	For the Residential, Small Commercial, Large Commercial, Small Demand
26		Large Demand, Small Volume Interruptible, and Medium Volume Interruptible
27		classes, Xcel Energy calculated the test year calendar month sales based on the

calculated in terms of the sales load component that is not associated with weather (base load), and the sales load component that is influenced by weather (total weather load). The weather was measured in terms of normal HDD, a described above. The base load sales and the total weather sales component were calculated for each class. The two components were then combined to
(total weather load). The weather was measured in terms of normal HDD, a described above. The base load sales and the total weather sales component were calculated for each class. The two components were then combined to
(total weather load). The weather was measured in terms of normal HDD, a described above. The base load sales and the total weather sales component were calculated for each class. The two components were then combined to
described above. The base load sales and the total weather sales component were calculated for each class. The two components were then combined to
were calculated for each class. The two components were then combined to
provide the total calendar-month volumes.
1
The calendar-month base load component was calculated as follows:
Step 1 The billing-month total weather load was calculated. This wa
accomplished by multiplying the billing-month sales weather
normalization regression coefficients (defined in terms of billing
month HDD and number of customers), times billing-month norma
HDD, times the projected number of customers.
Step 2 The billing-month base load was calculated by taking the difference
between the projected total billing-month sales and the billing-month
total weather load (as calculated in Step 1).
Step 3 The billing-month base load sales per billing day was determined b
dividing the billing-month base load sales (from Step 2) by the averag
number of billing days per billing month.
Step 4 The calendar-month base load sales were then calculated by multiplying
the billing-month base load sales per billing day (from Step 3) times th
number of days in the calendar month.
The calendar-month total weather load component was calculated the same wa
the billing-month total weather load was calculated (as described in Step

1		above). However, the calculation was performed by substituting the calendar-
2		month sales weather normalization regression coefficient (defined in terms of
3		calendar-month HDD and number of customers) and the calendar-month
4		normal HDD.
5		
6		The calendar-month total sales were calculated by combining the calendar-
7		month base load and calendar-month total weather load components.
8		
9		For the Large Volume Interruptible class, Xcel Energy calculated the test year
10		calendar month sales based on historical calendar month sales. For this class,
11		there are no total weather load sales.
12		
13		The Interdepartmental Sales, Generation Sales, and Transportation classes are
14		billed on a calendar month basis. Therefore, for these classes, the calendar
15		month volumes equal the billing month volumes.
16		
17		VII. COMPLIANCE REQUIREMENTS
18		
19	Q.	PLEASE DESCRIBE THE SALES FORECAST INFORMATION PROVIDED ON
20		SEPTEMBER 26, 2025.
21	Α.	The September 26, 2025 sales forecast pre-filing provided the data used in the
22		test year sales forecast in compliance with the Commission's orders in Docket
23		Nos. E002/GR-08-1065 and E002/GR-10-971, and Xcel Energy's
24		commitment in Docket No. G002/GR-09-1153. The information provided is
25		extensive, and includes all customer count, throughput, weather, demographic,
26		and binary data used to develop the test year forecast, as well as the following
27		items:

1		1) An explanation of the source and work papers supporting the derivation
2		or calculation of each of these data series, as well as a description and
3		justification for each binary variable used.
4		2) All regression models and results, and a description of methods used and
5		the results for the forecasts that are not based on a regression
6		methodology.
7		3) An explanation of any exogenous adjustment made to the forecast.
8		4) An explanation of the unbilled sales estimation process for the test year
9		and historical time period and all data necessary to recreate the
10		conversion, including a description of the weather response coefficients
11		and all data necessary to recreate the coefficients, and an explanation of
12		the calculation of calendar month weather response coefficients.
13		5) All data necessary to weather normalize historical calendar month sales.
14		6) A reconciliation between different sources for historical billing-month
15		sales.
16		
17	Q.	PLEASE PROVIDE MORE DETAILS AROUND INFORMATION PROVIDED AS PART OF
18		ITEM 1 ABOVE.
19	Α.	As part of item 1 above, the Company conducts an audit of the historical
20		economic and demographic data accessed through IHS Markit databases. To
21		conduct this audit, the Company accesses multiple publicly available U.S.
22		government websites, collects the source data, compares this data to the data
23		accessed through IHS Markit's databases, and provides explanations for any
24		differences. The reasons for differences have been due to: 1) timing differences
25		between when the data was accessed from IHS Markit and what is currently

26

available on the government websites, 2) the manner in which IHS Markit

1		converts nominal data to deflated data, or 3) the extrapolation of 2020 Census
2		data to more recent years at the metropolitan level.
3		
4		VIII. CONCLUSION
5		
6	Q.	PLEASE SUMMARIZE YOUR TESTIMONY.
7	Α.	I have presented the Company's forecasts of throughput and customers for the
8		January 1, 2026 to December 31, 2026 time period. I also presented details of
9		the methods used to develop the Dkt throughput and customer forecast and
10		the results. I have described the steps the Company has taken to comply with
11		all requirements resulting from previous rate cases, as well as agreements the
12		Company has made to provide forecasting data in advance of the filing of a rate
13		case.
14		
15		The Company's goal is to produce an accurate throughput forecast to support
16		its rate request. The Company's forecast in this case is based on sound
17		methodologies and provides a reasonable estimate of 2026 Dkt throughput and
18		customer counts. Therefore, the Company's forecast can be relied on for the
19		purpose of determining the revenue requirement and final rates in this
20		proceeding. While the Company's 2026 sales forecast is based on sound
21		methodologies and reasonable assumptions, as described in my testimony, the
22		Company proposes in this case to use weather normalized actuals in the 2026
23		test year, consistent with the approach adopted in the two most recent natura
24		gas rate cases.
25		
26	Q.	In your opinion, does the Company's throughput and customer forecast
27		provide a reasonable basis for establishing rates in the case?

1 A. Yes. The forecast data is a reasonable estimate of 2026 throughput and 2 customer counts and supports the Company's revenue projections. I 3 recommend that the Commission approve the continued use of actual 2026 4 weather normalized sales to set rates in this case. If the Commission does not 5 approve the use of 2026 weather normalized actual sales, I recommend the 6 Commission adopt my forecasts of throughput and customers, as reflected in 7 Schedule 3, for the purpose of determining the revenue requirement and final 8 rates in this proceeding.

- 10 Q. Does this conclude your testimony?
- 11 A. Yes, it does.

JOHN GOODENOUGH, PHD

EDUCATION

PhD in Economics, University of Delaware

2012

Dissertation: Economic Welfare Impacts of Real-Time Pricing and CO2 Emissions Trading: Simulation Results at the Customer Class Level for an Investor-Owned Utility

MA in Economics, University of Delaware

2006

BA in Economics, University of Maryland

2002

PROFESSIONAL EXPERIENCE

XCEL ENERGY Manager, Energy Forecasting Director of Sales, Energy, and Demand Forecasting Denver, CO 10/2019-05/2022 05/2022-Present

Management and Leadership:

- Manage the work and development of six employees
- Serve as company witness for sales forecasting and weather normalization in rate cases and resource plans
- Provide regulatory support for routine filings, Integrated Resource Plans, and rate cases
- Provide analytical and statistical analysis for special projects

Load Forecasting:

- Develop monthly short and long-term forecasts of electric customers, sales, and peak demand using time-series analysis and end-use modeling for four OpCos operating in eight states
- Sponsor projects to improve forecast accuracy and develop new forecasting tools
- Track regional economic indicators in support of forecasting models

ARIZONA PUBLIC SERVICE (APS)

Manager, Energy and Revenue Analysis and Forecasting

Phoenix, AZ 11/2016-10/2019

Management and Leadership:

- Manage the work and development of six employees
- Serve as expert on matters related to load forecasting and act as liaison to external stakeholders
- Provide regulatory support for monthly fuel cost filings, annual transmission filings, bi-annual Integrated Resource Plans, and rate cases
- Provide economic commentary for quarterly earnings release
- Provide analytical and statistical analysis for special projects

Load Forecasting:

- Develop monthly short and long-term forecasts of electric customers, sales, prices, and revenue using time-series analysis and end-use modeling
- Provide hourly system demand forecasts for use in medium and long-term dispatch modeling
- Develop company forecasts of customer adoption of electric vehicles and distributed generation
- Develop price elasticity models to assess customer response to changing rate design
- Track and forecast regional economic indicators in support of forecasting models

Financial Analysis:

- Analyze monthly financial impacts of fuel prices, plant dispatch, and plant outages
- Conduct monthly variance analysis and financial reporting
- Evaluate billing determinants and rate design impacts on company revenue

SOUTHERN CALIFORNIA EDISON (SCE)

Senior Energy Market Specialist, Short-Term Demand Forecasting

Rosemead, CA 07/2014-10/2016

Load Forecasting:

- Developed hourly short-term load forecasts using time-series analysis
- Created hourly prompt month load forecasts for the territory and the ISO
- Monitored short-term load forecasting errors and analyzed the impacts on procurement costs
- Developed semi-parametric econometric model for forecasting bundled load
- Created daily market bids for integrated demand response resources

EXELON CORPORATION, BALTIMORE GAS AND ELECTRIC (BGE) Principal Analyst, Load Analysis and Settlements

Baltimore, MD 06/2010-06/2014

Management and Leadership:

- Supervised the work of employees in the forecasting unit
- Participated in quarterly calls with senior management explaining regional trends in energy usage and economics
- Represented BGE Load Forecasting in the PJM Load Forecasting Group
- Supported conservation and electric supply groups in policy development and goal setting
- Conducted ad-hoc analysis for senior management

Load Forecasting and Financial Analysis:

- Provided monthly short and long-term forecasts of gas and electric sales, customers, prices, and revenue using time-series analysis
- Developed annual gas design-day forecast
- Conducted monthly variance analyses and financial reporting

PEPCO HOLDINGS, INC.

Regulatory Affairs Analyst

Washington, DC 12/2007-06/2010

DEPARTMENT OF ENERGY, ENERGY INFORMATION ADMINISTRATION

Program Assistant

Washington, D.C. Summer, 2007

DEPARTMENT OF LABOR, BUREAU OF LABOR STATISTICS

Economist

Washington, D.C. 02/2003-08/2004

DEPARTMENT OF COMMERCE, BUREAU OF THE CENSUS

Survey Statistician

Suitland, MD 06/2002-01/2003

Definition of Terms

Base Load - Component of sales not associated with weather.

Billing Days - Based on the meter reading schedule for the 21 billing cycles. For example, there are approximately 651 (21 cycles * 31 days) billing days during a typical billing month period.

Billing-Month Sales - Billed sales based on the meter reading schedule for the 21 billing cycles.

Calendar-Month Sales - Estimated sales, equal to the billing month sales, adjusted for the estimated unbilled sales of the current calendar month, less the estimated unbilled sales from the previous calendar month.

Commission – Minnesota Public Utilities Commission.

Company – Northern States Power Company, doing business as Xcel Energy.

Department – Minnesota Department of Commerce

Dkt – dekatherm; measure of gas sales.

DSM – Demand-Side Management.

DW Test Statistic - Durbin-Watson test statistic; tests for the presence of first-order autocorrelation. In the absence of first-order autocorrelation, the statistic equals 2.0.

Error Terms - The difference between the actual values of the data series being modeled (customers or sales) and the regression model's predicted, or "fitted" values for that series. Also called Residual Terms.

GUIC – Gas Utility Infrastructure Costs.

HDD - Heating Degree Days - Measure of weather. Calculated by subtracting the average daily temperature from a base of 65 degrees Fahrenheit.

NCE – New Centuries Energy Inc.

Definition of Terms (continued)

NOAA – National Oceanic and Atmospheric Administration.

Normal Weather – the average of twenty years of historical weather.

NSP – Northern States Power Company.

R-squared - Coefficient of determination; measures the quality of the model's fit to the historical data. The higher the R-squared statistic, the better the model is explaining the historical data.

Regression Model - Statistical technique employing multiple independent variables to model the variation of the dependent variable about its mean value.

Residual Terms - The difference between the actual values of the data series being modeled (customers or sales) and the regression model's predicted, or "fitted" values for that series. Also called Error Terms.

t-Statistic - Measures the importance of the independent variable to the regression. The higher the absolute value of the t-statistic, the more likely it is that the variable has a relationship to the dependent variable and is making an important contribution to the equation.

Test Year – January 1, 2026-December 31, 2026.

Total Weather Load - Component of sales influenced by weather.

Unbilled Sales – Gas consumed in the current month but not billed to customers until the succeeding month.

Weather Normalized – Dkt sales adjusted to remove the impact of abnormal weather.

Xcel Energy – Northern States Power Company, a Minnesota corporation.

XEI – Xcel Energy Inc.

XES – Xcel Energy Services Inc.

Docket No. G002/GR-25-356 Exhibit___(JMG-1), Schedule 3 Page 1 of 1

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
1	Xcel Energy - Minnesota Sta	ite												
2	Test Year Sales and Custome	ers by Custon	ner Class											
3														
4	Weather Normalized (Calendar M	Ionth Sales	s (Dkt)										
5														
6 7		<u>Jan 2026</u>	<u>Feb 2026</u>	<u>Mar 2026</u>	<u>Apr 2026</u>	May 2026	<u>Jun 2026</u>	<u>Jul 2026</u>	Aug 2026	<u>Sep 2026</u>	Oct 2026	Nov 2026	<u>Dec 2026</u>	<u>Year 2026</u>
8	Residential	7,469,866	6,552,714	4,917,893	2,844,870	1,536,717	789,266	650,090	671,148	865,484	2,188,994	4,207,920	6,729,831	39,424,795
9	Total Commercial ⁽¹⁾	4,237,040	3,964,337	3,012,971	1,756,481	1,021,347	631,730	426,456	494,088	617,248	1,393,059	2,560,038	3,901,334	24,016,129
10 11	Total Demand	381,827	346,954	308,181	225,145	175,307	148,815	148,123	152,999	158,643	220,350	265,369	343,628	2,875,341
12 13	Total Firm Sales	12,088,733	10,864,006	8,239,045	4,826,496	2,733,371	1,569,811	1,224,669	1,318,234	1,641,375	3,802,403	7,033,327	10,974,794	66,316,264
14 15	Total Interruptible ⁽²⁾	1,011,204	884,706	1,060,603	768,661	530,968	344,317	388,953	409,482	363,266	548,313	774,592	949,892	8,034,956
16 17	Total Retail Sales	13,099,937	11,748,712	9,299,648	5,595,157	3,264,338	1,914,128	1,613,622	1,727,716	2,004,642	4,350,716	7,807,919	11,924,686	74,351,221
18 19	Total Transportation	3,402,515	3,060,416	4,096,057	2,482,799	3,969,014	4,581,368	5,770,944	5,539,963	4,226,911	4,805,973	3,565,331	2,939,854	48,441,146
20	Total Sales	16,502,452	14,809,128	13,395,705	8,077,956	7,233,353	6,495,497	7,384,566	7,267,678	6,231,552	9,156,690	11,373,250	14,864,540	122,792,367
21	N 1 60													
22 23	Number of Customers	}												
24 25		<u>Jan 2026</u>	<u>Feb 2026</u>	Mar 2026	<u>Apr 2026</u>	May 2026	<u>Jun 2026</u>	<u>Jul 2026</u>	<u>Aug 2026</u>	<u>Sep 2026</u>	Oct 2026	<u>Nov 2026</u>	<u>Dec 2026</u>	<u>Year 2026</u>
	Residential	459,709	459,971	460,207	460,320	460,575	460,298	460,264	460,479	460,714	461,483	462,029	462,511	460,713
27	Total Commercial ⁽¹⁾	36,793	36,812	36,869	36,882	36,859	36,813	36,647	36,625	36,610	36,584	36,573	36,625	36,724
28 29	Total Demand	142	142	142	142	142	142	142	142	142	142	142	142	142
30 31	Total Firm Customers	496,643	496,925	497,218	497,344	497,576	497,253	497,053	497,246	497,466	498,209	498,744	499,279	497,580
32 33	Total Interruptible (2)	236	235	234	232	231	230	229	228	226	225	224	223	229
34 35	Total Retail Customers	496,880	497,160	497,452	497,577	497,807	497,483	497,282	497,473	497,693	498,434	498,968	499,501	497,809
	Total Transportation	29	29	29	29	29	29	29	29	29	29	29	29	29
38	Total Customers	496,909	497,189	497,481	497,606	497,836	497,512	497,311	497,502	497,722	498,463	498,997	499,530	497,838

⁽¹⁾ Includes Interdepartmental Sales

⁽²⁾ Includes Generation Sales

Xcel Energy Minnesota Residential 2026 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value	Definition
ResCust_HDD65_Jan	0.011	0.000	91.381	0.00%	
ResCust_HDD65_Feb	0.011	0.000	79.120	0.00%	
ResCust_HDD65_Mar	0.011	0.000	77.829	0.00%	
ResCust_HDD65_Apr	0.010	0.000	46.755	0.00%	
ResCust_HDD65_May	0.010	0.000	23.690	0.00%	
ResCust_HDD65_Jun	0.015	0.002	8.140	0.00%	
ResCust_Jul	0.610	0.166	3.681	0.03%	
ResCust_Aug	0.486	0.166	2.937	0.38%	
ResCust_Sep	0.545	0.166	3.289	0.12%	
ResCust_HDD65_Oct	0.008	0.001	13.577	0.00%	
ResCust_HDD65_Nov	0.009	0.000	31.680	0.00%	
ResCust_HDD65_Dec	0.010	0.000	61.956	0.00%	
ResCust_Fcst	1.053	0.143	7.385	0.00%	
ResPrice_Q1Q4	-262907.758	101910.767	-2.580	1.07%	

Prob (Jarque-Bera)

Xcel Energy Minnesota Residential 2026 Test-Year Sales Forecast

Model Statistics Iterations Adjusted Observations 180 Deg. of Freedom for Error 166 R-Squared 0.997 Adjusted R-Squared 0.997 AIC BIC 23.745 23.993 F-Statistic #NA Prob (F-Statistic) #NA Log-Likelihood -2,378.44 Model Sum of Squares 999,435,644,651,238.00 Sum of Squared Errors 3,161,918,814,854.84 Mean Squared Error 19,047,703,703.94 Std. Error of Regression 138,013.42 Mean Abs. Dev. (MAD) 95,531.81 Mean Abs. % Err. (MAPE) 4.47% **Durbin-Watson Statistic** 2.010 Durbin-H Statistic #NA Ljung-Box Statistic 25.11 Prob (Ljung-Box) 0.3996 Skewness -0.398 4.884 Kurtosis 31.396 Jarque-Bera

0.0000

Xcel Energy Minnesota Small Commercial 2026 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value
SmCommCust_HDD65_Jan_Reclass	0.028	0.001	36.267	0.00%
SmCommCust_HDD65_Feb_Reclass	0.028	0.001	33.903	0.00%
SmCommCust_HDD65_Mar_Reclass	0.029	0.001	34.279	0.00%
SmCommCust_HDD65_Apr_Reclass	0.024	0.001	21.129	0.00%
SmCommCust_HDD65_May_Reclass	0.025	0.003	9.872	0.00%
SmCommCust_HDD65_Jun_Reclass	0.023	0.008	3.006	0.31%
SmCommCust_HDD65_Oct_Reclass	0.011	0.003	4.310	0.00%
SmCommCust_HDD65_Nov_Reclass	0.018	0.002	10.968	0.00%
SmCommCust_HDD65_Dec_Reclass	0.023	0.001	25.005	0.00%
MN SmCommCust Fcst	3.145	0.603	5.215	0.00%
AR(1)	0.428	0.076	5.592	0.00%
SAR(1)	0.627	0.066	9.498	0.00%

Xcel Energy Minnesota Small Commercial 2026 Test-Year Sales Forecast

Model Statistics	
Iterations	29
Adjusted Observations	167
Deg. of Freedom for Error	155
R-Squared	0.992
Adjusted R-Squared	0.991
AIC	20.956
BIC	21.180
F-Statistic	#NA
Prob (F-Statistic)	#NA
Log-Likelihood	-1,974.82
Model Sum of Squares	22,460,865,005,854.30
Sum of Squared Errors	182,620,823,737.96
Mean Squared Error	1,178,198,862.83
Std. Error of Regression	34,324.90
Mean Abs. Dev. (MAD)	22,449.59
Mean Abs. % Err. (MAPE)	6.98%
Durbin-Watson Statistic	2.091
Durbin-H Statistic	#NA
Ljung-Box Statistic	33.79
Prob (Ljung-Box)	0.0884
Skewness	-0.145
Kurtosis	6.783
Jarque-Bera	100.178
Prob (Jarque-Bera)	0.0000

Xcel Energy Minnesota Large Commercial 2026 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value
LgCommCust_HDD65_Jan_Reclass	0.169	0.001	125.112	0.00%
LgCommCust_HDD65_Feb_Reclass	0.168	0.002	110.276	0.00%
LgCommCust_HDD65_Mar_Reclass	0.179	0.002	110.717	0.00%
LgCommCust_HDD65_Apr_Reclass	0.168	0.003	64.732	0.00%
LgCommCust_HDD65_May_Reclass	0.173	0.005	33.341	0.00%
LgCom_Jun_Reclass	15.280	2.007	7.614	0.00%
LgCommCust_HDD65_Oct_Reclass	0.091	0.008	11.859	0.00%
LgCommCust_HDD65_Nov_Reclass	0.131	0.003	39.331	0.00%
LgCommCust_HDD65_Dec_Reclass	0.149	0.002	84.958	0.00%
CUST_LgCom_MN_Reclass	35.188	0.960	36.636	0.00%

Xcel Energy Minnesota Large Commercial 2026 Test-Year Sales Forecast

Model Statistics	
Iterations	1
Adjusted Observations	180
Deg. of Freedom for Error	170
R-Squared	0.995
Adjusted R-Squared	0.995
AIC	22.296
BIC	22.473
F-Statistic	#NA
Prob (F-Statistic)	#NA
Log-Likelihood	-2,252.04
Model Sum of Squares	157,991,657,665,178.00
Sum of Squared Errors	776,286,365,990.84
Mean Squared Error	4,566,390,388.18
Std. Error of Regression	67,575.07
Mean Abs. Dev. (MAD)	45,401.16
Mean Abs. % Err. (MAPE)	4.19%
Durbin-Watson Statistic	2.001
Durbin-H Statistic	#NA
Ljung-Box Statistic	24.93
Prob (Ljung-Box)	0.4096
Skewness	-0.913
Kurtosis	6.162
Jarque-Bera	99.999
Prob (Jarque-Bera)	0.0000

Xcel Energy Minnesota Small Interruptible 2026 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value
SVICust_HDD65_Jan	0.707	0.020	35.561	0.00%
SVICust_HDD65_Feb	0.704	0.023	30.335	0.00%
SVICust_HDD65_Mar	0.836	0.024	35.180	0.00%
SVICust_HDD65_Apr	0.786	0.036	22.061	0.00%
SVICust_HDD65_May	1.013	0.074	13.700	0.00%
SVICust_HDD65_Jun	0.825	0.269	3.071	0.25%
SVICust_HDD65_Oct	0.380	0.097	3.936	0.01%
SVICust_HDD65_Nov	0.634	0.046	13.709	0.00%
SVICust_HDD65_Dec	0.752	0.026	29.339	0.00%
SVICust_Fcst	229.905	12.915	17.802	0.00%
Outlier_2014_Feb	-119128.206	18329.861	-6.499	0.00%
Outlier_2018_Jan	-78122.799	17893.149	-4.366	0.00%
SAR(1)	0.30012775	0.07046243	4.2594	4E-05

Xcel Energy Minnesota Small Interruptible 2026 Test-Year Sales Forecast

Model Statistics Iterations 11 Adjusted Observations 168 Deg. of Freedom for Error 155 R-Squared 0.977 Adjusted R-Squared 0.976 AIC BIC 19.752 19.994 F-Statistic #NA Prob (F-Statistic) #NA Log-Likelihood -1,884.57 Model Sum of Squares 2,355,973,169,814.16 Sum of Squared Errors 54,500,335,134.60 Mean Squared Error 351,615,065.38 Std. Error of Regression 18,751.40 Mean Abs. Dev. (MAD) 13,082.82 Mean Abs. % Err. (MAPE) 8.21% **Durbin-Watson Statistic** 1.913 Durbin-H Statistic #NA 47.43 Ljung-Box Statistic Prob (Ljung-Box) 0.003 Skewness -0.005 Kurtosis 4.123 Jarque-Bera 8.834 Prob (Jarque-Bera) 0.012

Xcel Energy Minnesota Medium Interruptible 2026 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value
MVICust_HDD65_Jan	2.282	0.133	17.210	0.00%
MVICust_HDD65_Feb	2.804	0.149	18.874	0.00%
MVICust_HDD65_Mar	2.757	0.162	16.987	0.00%
MVICust_HDD65_Apr	2.969	0.250	11.881	0.00%
MVICust_HDD65_May	3.632	0.513	7.084	0.00%
MVICust_HDD65_Nov	3.227	0.313	10.310	0.00%
MVICust_HDD65_Dec	2.373	0.174	13.672	0.00%
Customers_BillingDays_Interaction	97.724	2.520	38.785	0.00%
Outlier_2021_Mar	-183989.876	42236.641	-4.356	0.00%
SAR(1)	0.294	0.059	4.966	0.00%

Xcel Energy Minnesota Medium Interruptible 2026 Test-Year Sales Forecast

Model Statistics	ı
Iterations	7
Adjusted Observations	168
Deg. of Freedom for Error	158
R-Squared	0.915
Adjusted R-Squared	0.910
AIĆ	21.481
BIC	21.667
F-Statistic	#NA
Prob (F-Statistic)	#NA
Log-Likelihood	-2,032.81
Model Sum of Squares	3,409,425,784,330.87
Sum of Squared Errors	318,267,374,557.20
Mean Squared Error	2,014,350,471.88
Std. Error of Regression	44,881.52
Mean Abs. Dev. (MAD)	33,895.88
Mean Abs. % Err. (MAPE)	8.51%
Durbin-Watson Statistic	1.908
Durbin-H Statistic	#NA
Ljung-Box Statistic	41.23
Prob (Ljung-Box)	0.0157
Skewness	0.200
Kurtosis	3.164
Jarque-Bera	1.312
Prob (Jarque-Bera)	0.5188

Xcel Energy Minnesota Residential 2026 Test-Year Customer Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value
MA_HH_MN	193.219	1.604	120.453	0.00%
Jan	239.160	76.473	3.127	0.21%
Feb	287.368	93.396	3.077	0.25%
Mar	301.644	93.509	3.226	0.15%
Apr	145.581	76.355	1.907	5.84%
Jun	-544.307	81.095	-6.712	0.00%
Jul	-885.611	103.744	-8.536	0.00%
Aug	-941.995	112.862	-8.346	0.00%
Sep	-987.319	112.641	-8.765	0.00%
Oct	-478.448	102.632	-4.662	0.00%
Nov	-204.909	78.668	-2.605	1.01%
Outlier_HH_Bump	-439.921	156.349	-2.814	0.55%
AR(1)	0.993	0.009	105.339	0.00%
SAR(1)	0.285	0.090	3.154	0.19%

Xcel Energy Minnesota Residential 2026 Test-Year Customer Forecast

Model Statistics Iterations 60 **Adjusted Observations** 167 Deg. of Freedom for Error 153 R-Squared 1.000 Adjusted R-Squared 1.000 AIĆ BIC 11.000 11.261 F-Statistic #NA Prob (F-Statistic) #NA Log-Likelihood -1,141.46 Model Sum of Squares 48,901,408,285.62 Sum of Squared Errors 8,455,203.63 Mean Squared Error 55,262.77 Std. Error of Regression 235.08 Mean Abs. Dev. (MAD) 173.34 Mean Abs. % Err. (MAPE) 0.04% **Durbin-Watson Statistic** 0.911 **Durbin-H Statistic** #NA Ljung-Box Statistic 320.414 Prob (Ljung-Box) 0.000 Skewness 0.451 Kurtosis 3.112 Jarque-Bera 5.760 Prob (Jarque-Bera) 0.056

Xcel Energy Minnesota Small Commercial 2026 Test-Year Customer Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value
CONST	21444.115	1426.853	15.029	0.00%
NR_MN	0.578	0.255	2.270	2.45%
BinaryTrans.Jan	109.469	25.519	4.290	0.00%
BinaryTrans.Feb	143.911	29.213	4.926	0.00%
BinaryTrans.Mar	172.320	30.325	5.682	0.00%
BinaryTrans.Apr	172.952	29.125	5.938	0.00%
BinaryTrans.May	163.196	25.330	6.443	0.00%
BinaryTrans.Jun	140.084	17.408	8.047	0.00%
BinaryTrans.Dec	57.288	17.857	3.208	0.16%
AR(1)	1.077	0.080	13.390	0.00%
AR(2)	-0.200	0.081	-2.482	1.41%
SMA(1)	0.596	0.065	9.179	0.00%

Xcel Energy Minnesota Small Commercial 2026 Test-Year Customer Forecast

18
178
166
0.933
0.929
7.581
7.796
211.3783189
0
-915.30
4,272,830.78
305,049.74
1,837.65
42.87
28.84
0.12%
1.982
#NA
35.83
0.0570
-1.225
9.859
393.486
0.000