

September 17, 2025

Will Seuffert
Executive Secretary
Minnesota Public Utilities Commission
121 7th Place East, Suite 350
St. Paul, MN 55101-2147

Re: Supplemental Comments in the Matter of a Commission Investigation into a Fuel Life-Cycle Analysis Framework for Utility Compliance with Minnesota's Carbon-Free Standard - PUC Docket Number/s: E-999/CI-24-352

Dear Mr. Seuffert,

Thank you for the opportunity to submit supplemental comments to the docket for the Commission's Investigation into a Fuel Life-Cycle Analysis Framework for Utility Compliance with Minnesota's Carbon-Free Standard (PUC Docket Number/s: E-999/CI-24-352).

With respect to LCA considerations for woody biomass energy, a great deal more scientific work has been done in this arena than is reflected in the recommendations presented by the Minnesota agencies. For instance, the Minnesota Pollution Control Agency and the Department of Commerce have recommended that the counterfactual for energy produced from wood should be open burning.¹ Assuming that 100% of the "waste" wood, if not burned for energy, will be combusted through open burning, is not a realistic or scientifically valid assumption for a counterfactual scenario. Other counterfactuals that must be considered include natural decay and continued growth and carbon sequestration, in particular since the agencies recommend a definition of "waste biomass" that includes whole living trees.²

We have attached an appendix with many of the key documents cited in our previous comments in this and last year's proceedings, which should provide the Commission and agency staff with ample scientific data on considerations for life cycle analyses for woody biomass energy.

Sincerely,

Laura Haight
US Policy Director

¹ MPCA and DOC comments to MNPUC, June 5, 2025, p. 18.

² Ibid, p. 12.

Attachments: Appendix A

1. Baker, B. C. & Hanson, C. T. Cumulative Tree Mortality from Commercial Thinning and a Large Wildfire in the Sierra Nevada, California. *Land* 11, 995 (2022).
2. Bentsen, N. S. Carbon debt and payback time – Lost in the forest? *Renewable and Sustainable Energy Reviews* 73, 1211–1217 (2017).
3. Bernier, P. & Paré, D. Using ecosystem CO₂ measurements to estimate the timing and magnitude of greenhouse gas mitigation potential of forest bioenergy. *GCB Bioenergy* 5, 67–72 (2013).
4. Booth, M. S. & Giuntoli, J. Burning Up the Carbon Sink: How the EU's Forest Biomass Policy Undermines Climate Mitigation. *GCB Bioenergy* 17, e70035 (2025).
5. Booth, M. S. Trees, Trash, and Toxics: How Biomass Energy Has Become The New Coal. <https://www.pfpi.net/wp-content/uploads/2014/04/PFPI-Biomass-is-the-New-Coal-April-2-2014.pdf> (2014).
6. Booth, M. S. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy. *Environ. Res. Lett.* 13, 035001 (2018).
7. Booth, M. S. & Leuenberger, B. The Bioenergy Boom from the Federal Stimulus: Outcomes and Lessons. <https://www.pfpi.net/wp-content/uploads/2018/10/PFPI-Bioenergy-and-the-Stimulus-Oct-24.pdf> (2018).
8. Buchholz, T., Hurteau, M. D., Gunn, J. & Saah, D. A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. *GCB Bioenergy* 8, 281–289 (2016).
9. Buonocore, J. J., Salimifard, P., Michanowicz, D. R. & Allen, J. G. A decade of the U.S. energy mix transitioning away from coal: historical reconstruction of the reductions in the public health burden of energy. *Environ. Res. Lett.* 16, 054030 (2021).
10. Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel-reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? *Frontiers in Ecology and the Environment* 10, 83–90 (2012).
11. DellaSala, D. A., Baker, B. C., Hanson, C. T., Ruediger, L. & Baker, W. Have western USA fire suppression and megafire active management approaches become a contemporary Sisyphus? *Biological Conservation* 268, 109499 (2022).
12. Domke, G. M., Becker, D. R., D'Amato, A. W., Ek, A. R. & Woodall, C. W. Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA. *Biomass and Bioenergy* 36, 141–150 (2012).
13. EASAC. Forest bioenergy, carbon capture and storage, and carbon dioxide removal: an update. EASAC - Science Advice for the Benefit of Europe (2019).

14. Gómez, D. & Watterson, J. 2. Stationary Combustion. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories vol. 2 47 (2006).
15. Gunn, J., Moomaw, W. & Duffy, P. Scientific Evidence Does Not Support the Carbon Neutrality of Woody Biomass Energy. 19 <https://www.sig-nal.org/reports-and-tools> (2018).
16. Holtsmark, B. Harvesting in boreal forests and the biofuel carbon debt. *Climatic Change* 112, 415–428 (2012).
17. Honeycutt, M. SAB review of Framework for Assessing Biogenic CO₂ Emissions from Stationary Sources (2014). (2019).
18. Laganière, J., Paré, D., Thiffault, E. & Bernier, P. Y. Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests. *GCB Bioenergy* 9, 358–369 (2017).
19. McKechnie, J., Colombo, S., Chen, J., Mabee, W. & MacLean, H. L. Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels. *Environ. Sci. Technol.* 45, 789–795 (2011).
20. Mildrexler, D. J. et al. 2020. "Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Northwest." *Frontiers in Forests and Global Change* 3: 1-15. <https://www.frontiersin.org/articles/10.3389/ffgc.2020.594274/full>.
21. Pingoud, K., Ekholm, T. & Savolainen, I. Global warming potential factors and warming payback time as climate indicators of forest biomass use. *Mitig Adapt Strateg Glob Change* 17, 369–386 (2012).
22. Rüter, S. & Matthews, R. W. 12. Harvested Wood Products. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories vol. 4 49 (2019).
23. Sterman, J., Siegel, L. & Rooney-Varga, J. N. Does replacing coal with wood lower CO₂ emissions? Dynamic lifecycle analysis of wood bioenergy. *IOP Environmental Research Letters* (2018) doi:[10.1088/1748-9326/aaa512](https://doi.org/10.1088/1748-9326/aaa512).
24. Ter-Mikaelian, M. T., Colombo, S. J. & Chen, J. The Burning Question: Does Forest Bioenergy Reduce Carbon Emissions? A Review of Common Misconceptions about Forest Carbon Accounting. *J. For.* 113, 57–68 (2015).
25. Ter-Mikaelian, M. T. et al. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in ontario, canada. *GCB Bioenergy* (2014) doi:[10.1111/gcbb.12198](https://doi.org/10.1111/gcbb.12198).
26. US Internal Revenue Service, Department of the Treasury. Final regulation, Section 45Y Clean Electricity Production Credit and Section 48E Clean Electricity Investment Credit, *Federal Register*, Vol. 90, No. 9, Jan. 15, 2025.
27. Walker, T., Cardellichio, P., Gunn, J. S., Saah, D. S. & Hagan, J. M. Carbon Accounting for Woody Biomass from Massachusetts (USA) Managed Forests: A Framework for

- Determining the Temporal Impacts of Wood Biomass Energy on Atmospheric Greenhouse Gas Levels. *Journal of Sustainable Forestry* 32, 130–158 (2013).
28. Zanchi, G., Pena, N. & Bird, N. Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. *GCB Bioenergy* 4, 761–772 (2012).