
Appendix M

Greenhouse Gas Emissions Summary

Iron Pine Solar Project GHG Emissions Summary

		An	nual Emissio	ns (short ton/	yr)'	Tota	l Project Emis	sions (short	tons)
Project	Source	CO₂ (ton/yr)	CH₄ (ton/yr)	N₂O (ton/yr)	CO₂e (ton/yr)	CO₂ (ton)	CH ₄ (ton)	N₂O (ton)	CO₂e (ton)
Construction Em	issions								
Solar Project	Construction - Mobile Sources Onroad - Gasoline and Diesel	177	5.47E-03	5.13E-03	179	310	9.58E-03	8.98E-03	313
Solar Project	Construction - Mobile Sources Non-road - Diesel	6,599	6.54E-01	6.09E-01	6,797	11,549	1.14E+00	1.06E+00	11,895
Gen-Tie Project	Construction - Mobile Sources Onroad - Gasoline and Diesel	31	2.17E-04	9.86E-04	31	53	3.80E-04	1.73E-03	54
Gen-Tie Project	Construction - Mobile Sources Non-road - Diesel	1,775	1.76E-01	1.64E-01	1,829	3,107	3.08E-01	2.86E-01	3,200
Total Constructi	on Emissions	8,583	8.35E-01	7.78E-01	8,835	15,020	1.46E+00	1.36E+00	15,462
Operational Emi	ssions				_				
Solar Project	Operations - Mobile Sources	3.2	5.96E-05	4.30E-05	3.2	95.4	1.79E-03	1.29E-03	96
Total Operation	al Emissions	3.2	5.96E-05	4.30E-05	3.2	95.4	1.79E-03	1.29E-03	96
Decomissioning	Emissions								
Solar Project	Decomissioning - Mobile Sources Onroad - Gasoline and Diesel ²	177	5.47E-03	5.13E-03	179	177	5.47E-03	5.13E-03	179
Solar Project	Decomissioning - Mobile Sources Non-road - Diesel ²	6599	6.54E-01	6.09E-01	6797	6599	6.54E-01	6.09E-01	6797
Total Decomission	oning Emissions	6,777	6.59E-01	6.14E-01	6,976	6,777	6.59E-01	6.14E-01	6,976
Total Lifetime E	missions					21,892	2.12E+00	1.98E+00	22,534
Avoided Emission	ns								
Scope 2	Electricity Generation Avoided Emissions ³				-308,000				-9,240,000
Total - Net Emis	otal - Net Emissions Change					21,892	2	2	-9,217,466

^{1.} Construction and decomissioning emissions will take place for short duration at the beginning and end of the solar project, respectively.

^{2.} Assume decomissioning will require the same equipment and number of workers as construction. Per the application, decomissioning is expected to take place within 1 year of solar plant closure.

^{3.} Avoided emissions are consistent with Section 1.1., that the electricity generated by the project will offset approximately 280,000 metric tons (or 308,000 short tons) of CO2e annually.

Construction - Solar Project Mobile Sources

Construction 1.75 Years (estimate)

Project
Lifetime 30 Years (estimate, based on RPA application)

								Ann	ual	Total for	Project
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	Fuel Type	VMT (miles per day, per vehicle) ³	Miles per Gallon⁴	Fuel Usage (gal/day, all vehicles)	Days Per Year ²	Miles Traveled (mi/yr, all vehicles)	Fuel Usage (gal/yr, all vehicles)	Miles Traveled (mi)	Fuel Usage (gal)
	Light Duty Vehicles - Laborers (commute)	25	Gas	20	22.8	22.0	260	130,000	5,710	227,500	9,992
	Light Duty Vehicles - Laborers (commute)	25	Diesel	20	18.1	27.7	260	130,000	7,202	227,500	12,603
	Heavy Duty Trucks - Dump Trucks (onsite and offsite)	5	Diesel	20	7.9	12.6	200	20,000	2,522	35,000	4,414
	Heavy Duty Trucks - Semis (onsite and offsite)	8	Diesel	20	6.9	23.1	50	8,000	1,157	14,000	2,025

- 1. Vehicle types are defined by the Federal Highway Administration (FHWA). Assumed for this project that all commuters used light duty vehicles.
- 2. Laborers commute data provided by facility: Approximate 300+ people working onsite at maximum construction capacity. Assuming some people carpool, average number of vehicles per day estimated at
- 3. Based on estimate from the facility.
- 4. For light duty vehicles, based on 2022 value from U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual Issues), Table VM-1, available at http://from Table VM-1.
- 5. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/qhg-emission-factors-hub, updated April 2022). Assume Year 2007 for CH4, N2O emission factor

									E	mission Factors	3
Onroad/Offr	Vehicle Type	Number of Vehicles ¹	Fuel type	Engine Size (hp) ¹	Consumption Rate (gal/hour per hp- hr) ²	Hours per Year ¹	Total Gallons per Year	Total Gallons for Project	CO2 (kg/gal)	CH4 (g/gal)	N2O (g/gal)
Off-road	Crane	0	Diesel	-	0.05	2,080	0	0	10.21	1.01	0.94
	Backhoe	0	Diesel	-	0.05	2,080	0	0	10.21	1.01	0.94
	Loader	4	Diesel	350	0.05	2,080	145,600	254,800	10.21	1.01	0.94
	Bulldozer	5	Diesel	350	0.05	2,080	182,000	318,500	10.21	1.01	0.94
	Excavator	5	Diesel	400	0.05	2,080	208,000	364,000	10.21	1.01	0.94
	Skid Steer	5	Diesel	100	0.05	2,080	52,000	91,000	10.21	1.01	0.94
	Total	19					587,600	1,028,300			Total

- 1. Estimated based on information from similar projects.
- 2. Off-road mobile source fuel usage based on South Coast Air Quality Management District CEQA Air Quality Handbook, Table A9-3E.
- 3. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub, updated April 2022).

Construction - Solar Project Mobile Sources

Construction 1.75 Years (estimal Project
Lifetime 30 Years (estimal

			E	mission Factors	5		Total Emiss	ions (ton)			Emission	s per Year	
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	CO2 (kg/gal)	CH4 (g/mile)	N2O (g/mile)	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)
	Light Duty Vehicles - Laborers (commute)	25	8.78	0.0072	0.0052	96.51	0.0018	0.00130	97	55.1	0.00103	0.00075	55.395
	Light Duty Vehicles - Laborers (commute)	25	10.21	0.029	0.0214	141.54	0.0073	0.00536	143	80.9	0.00415	0.00306	81.897
	Heavy Duty Trucks - Dump Trucks (onsite and offsite)	5	10.21	0.0095	0.0431	49.58	0.0004	0.0017	50	28.3	0.00021	0.0009	28.617
	Heavy Duty Trucks - Semis (onsite and offsite)	8	10.21	0.0095	0.0431	22.75	0.0001	0.0007	23	13.0	0.00008	0.0004	13.114
					Total	310	0.010	0.009	313	177.4	0.00547	0.0051	179.0

- 1. Vehicle types are defined by the Federal Highway Adm
- 2. Laborers commute data provided by facility: Approxima 50. Assume half of the vehicles will be gas, half will be diesel.
- 3. Based on estimate from the facility.
- 4. For light duty vehicles, based on 2022 value from U.S. \(\) \(
- 5. Emission factors based on the U.S. EPA's Emission Fas.

				Total Projec	t Emissions			Emissions	Per Year	
Onroad/Offr oad	Vehicle Type	Number of Vehicles ¹	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)
Off-road	Crane	0	0.00	0.000	0.000	-	-	-	-	-
	Backhoe	0	0.00	0.000	0.000	-	-	-	-	-
	Loader	4	2861.66	0.284	0.264	2,947	1,635.2	0.1620	0.1508	1,684.2
	Bulldozer	5	3577.07	0.354	0.330	3,684	2,044.0	0.2025	0.1885	2,105.3
	Excavator	5	4088.08	0.405	0.377	4,211	2,336.0	0.2315	0.2154	2,406.0
	Skid Steer	5	1022.02	0.101	0.094	1,053	584.0	0.0579	0.0538	601.5
	Total	19	11,549	1.144	1.065	11,895	6,599.3	0.65388	0.6085	6,797.0

- 1. Estimated based on information from similar projects.
- 2. Off-road mobile source fuel usage based on South Coa
- 3. Emission factors based on the U.S. EPA's Emission Fε

Construction - Gen Tie Line Project Mobile Sources

Construction 1.75 Years (estimate)
Project
Lifetime 30 Years (estimate)

								Ann	ual	Total for	Project
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	Fuel Type	per day, per vehicle) ³	Miles per Gallon⁴	Fuel Usage (gal/day, all vehicles)	Days Per Year⁵	Miles Traveled (mi/yr, all vehicles)	Fuel Usage (gal/yr, all vehicles)	Miles Traveled (mi)	Fuel Usage (gal)
Onroad	Light Duty Vehicles - Laborers (commute - already counted in solar project calcs)	0	Gas	20	22.8	0.0	260	0	0	0	0
	Heavy Duty Trucks - Dump Trucks (onsite and offsite)	3	Diesel	20	7.9	7.6	260	15,600	1,968	27,300	3,443
	Heavy Duty Trucks - Semis (onsite and offsite)	1	Diesel	20	6.9	2.9	260	5,200	752	9,100	1,317

- 1. Vehicle types are defined by the Federal Highway Administration (FHWA). Assumed for this project that all commuters used light duty vehicles.
- 2. Estimate based on other similar projects
- 3. Based on estimate from the facility.
- 4. For light duty vehicles, based on 2022 value from U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual Issues), Table VM-1, available at http://w
- 5. Assumes 5 days/week, 52 weeks/year.
- 6. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub, updated April 2022).

									Е	Emission Factors	, ⁴
					Consumption						
					Rate						
Onroad/Offr		Number of		Engine Size	(gal/hour per hp-	Hours per	Total Gallons	Total Gallons			
oad	Vehicle Type	Vehicles ¹	Fuel type	(hp) ¹	hr)²	Year ³	per Year	for Project	CO2 (kg/gal)	CH4 (g/gal)	N2O (g/gal)
Off-road	Crane	1	Diesel	320	0.05	2,080	33,280	58,240	10.21	1.01	0.94
	Backhoe	1	Diesel	100	0.05	2,080	10,400	18,200	10.21	1.01	0.94
	Loader	1	Diesel	400	0.05	2,080	41,600	72,800	10.21	1.01	0.94
	Bulldozer	1	Diesel	200	0.05	2,080	20,800	36,400	10.21	1.01	0.94
	Excavator	1	Diesel	300	0.05	2,080	31,200	54,600	10.21	1.01	0.94
	Skid Steer	2	Diesel	100	0.05	2,080	20,800	36,400	10.21	1.01	0.94
	Total	7					158,080	276,640			Total

- Estimated based on information from similar projects.
- 2. Off-road mobile source fuel usage based on South Coast Air Quality Management District CEQA Air Quality Handbook, Table A9-3E.
- 3. Based on 5 days/week, 52 weeks/year.
- 4. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub, updated April 2022).

Construction - Gen Tie Line Project Mobile Sources

Construction 1.75 Years (estimat Project Lifetime 30 Years (estimat

			E	mission Factors	s ⁶		Total Emiss	sions (ton)			Emission	s per Year	
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	CO2 (kg/gal)	CH4 (g/mile)	N2O (g/mile)	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)
Onroad	Light Duty Vehicles - Laborers (commute - already counted in solar project calcs)	0	8.78	0.007226	0.005213	-	0.0000	0.00000	-	-	-	-	-
	Heavy Duty Trucks - Dump Trucks (onsite and offsite)	3	10.21	0.0095	0.0431	38.67	0.0003	0.0013	39	22.1	0.00016	0.0007	22.322
	Heavy Duty Trucks - Semis (onsite and offsite)	1	10.21	0.0095	0.0431	14.79	0.0001	0.0004	15	8.4	0.00005	0.0002	8.524
					Total	53	0.000	0.002	54	30.5	0.00022	0.0010	30.8

- 1. Vehicle types are defined by the Federal Highway Admi
- 2. Estimate based on other similar projects
- 3. Based on estimate from the facility.
- 4. For light duty vehicles, based on 2022 value from U.S. Iww.finwa.dot.gov/policyinformation/statistics.cfm as of February 2022. For heavy duty vehicles, used value for "Single Unit Trucks" for Dump Trucks and "Combination Trucks" for Semis from Table VM-1.
- 5. Assumes 5 days/week, 52 weeks/year.
- 6. Emission factors based on the U.S. EPA's Emission Fac

				Total Projec	t Emissions		Emissions Per Year					
Onroad/Offr oad	Vehicle Type	Number of Vehicles ¹	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)		
Off-road	Crane	1	654.09	0.065	0.060	674	373.8	0.0370	0.0345	385.0		
	Backhoe	1	204.40	0.020	0.019	211	116.8	0.0116	0.0108	120.3		
	Loader	1	817.62	0.081	0.075	842	467.2	0.0463	0.0431	481.2		
	Bulldozer	1	408.81	0.041	0.038	421	233.6	0.0231	0.0215	240.6		
	Excavator	1	613.21	0.061	0.057	632	350.4	0.0347	0.0323	360.9		
	Skid Steer	2	408.81	0.041	0.038	421	233.6	0.0231	0.0215	240.6		
	Total	7	3,107	0.308	0.286	3,200	1,775.4	0.17591	0.1637	1,828.6		

- Estimated based on information from similar projects.
- 2. Off-road mobile source fuel usage based on South Coa
- 3. Based on 5 days/week, 52 weeks/year.
- 4. Emission factors based on the U.S. EPA's Emission Fac

Operation - Mobile Sources

Project

Lifetime 30 Years (estimate)

								Ann	ual	Total for Project		E	mission Factors	,4
		Number of		VMT (miles		Fuel Usage		Miles Traveled	Fuel Usage					
Onroad/Off-		Vehicles per		per day, per	Miles per	(gal/day, all		(mi/yr, all	(gal/yr, all	Miles Traveled	Fuel Usage			
Road	Vehicle Type ¹	Day ²	Fuel Type	vehicle)2	Gallon ³	vehicles)	Days Per Year ²	vehicles)	vehicles)	(mi)	(gal)	CO2 (kg/gal)	CH4 (g/mile)	N2O (g/mile)
Onroad	Light Duty Vehicles	3	Gas	10	22.8	1.32	250	7,500	329	225,000	9,883	8.78	0.0072	0.0052
														Total

1. Vehicle types are defined by the Federal Highway Administration (FHWA). Assumed operation performed using light duty vehicles.

- 2. Per facility approximately 2-3 vehicles daily, traveling approximately 10 miles per day per vehicle. Days per year is based on 50 weeks/year and 5 days/week.
- 3. For light duty vehicles, based on 2022 value from U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual Issues), Table VM-1, available at http://www.fhwa.dot.gov/policyinformation/statistics.cfm Semis from Table VM-1.
- 4. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub, updated April 2022).

Operation - Mobile Sources

Project Lifetime

30 Years (estimat

				Total Emiss	ions (ton)			Annual Emis	sions (ton/yr)	
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)
Onroad	Light Duty Vehicles	3	95.45	0.0018	0.00129	96	3.2	0.00006	0.00004	3.2
					0.001	96	3.2	0.00006	0.0000	3.2

- 1. Vehicle types are defined by the Federal Highway Adm
- 2. Per facility approximately 2-3 vehicles daily, traveling
- 3. For light duty vehicles, based on 2022 value from U.S. as of February 2022. For heavy duty vehicles, used value for "Single Unit Trucks" for Dump Trucks and "Combination Trucks" for Semis from Table VM-1.
- 4. Emission factors based on the U.S. EPA's Emission F ϵ

Decommissioning Solar Project - Mobile Sources

Decomissioning

Duration 1.00 Years (based on RPA application)

								Ann		Total for	Project
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	Fuel Type	VMT (miles per day, per vehicle) ³	Miles per Gallon⁴	Fuel Usage (gal/day, all vehicles)	Days Per Year ²	Miles Traveled (mi/yr, all vehicles)	Fuel Usage (gal/yr, all vehicles)	Miles Traveled (mi)	Fuel Usage (gal)
Onroad	Light Duty Vehicles - Laborers (commute)	25	Gas	20	22.8	22.0	260	130,000	5,710	130,000	5,710
	Light Duty Vehicles - Laborers (commute)	25	Diesel	20	18.1	27.7	260	130,000	7,202	130,000	7,202
	Heavy Duty Trucks - Dump Trucks (onsite and offsite)	5	Diesel	20	7.9	12.6	200	20,000	2,522	20,000	2,522
	Heavy Duty Trucks - Semis (onsite and offsite)	8	Diesel	20	6.9	23.1	50	8,000	1,157	8,000	1,157

- 1. Vehicle types are defined by the Federal Highway Administration (FHWA). Assumed for this project that all commuters used light duty vehicles.
- 2. Laborers commute data provided by facility: Approximate 300+ people working onsite at maximum construction capacity. Assuming some people carpool, average number of vehicles per day estimated at 50
- 3. Based on estimate from the facility.
- 4. For light duty vehicles, based on 2022 value from U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual Issues), Table VM-1, available at http://ww.from Table VM-1.
- 5. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub, updated April 2022).

									Е	mission Factors	3
					Consumption						
					Rate						
		Number of		Engine Size	(gal/hour per hp-	Hours per	Total Gallons	Total Gallons			
Onroad/Offroad	Vehicle Type	Vehicles ¹	Fuel type	(hp) ¹	hr)²	Year ¹	per Year	for Project	CO2 (kg/gal)	CH4 (g/gal)	N2O (g/gal)
Off-road	Crane	0	Diesel	250	0.05	2,080	0	0	10.21	1.01	0.94
	Backhoe	0	Diesel	-	0.05	2,080	0	0	10.21	1.01	0.94
	Loader	4	Diesel	350	0.05	2,080	145,600	145,600	10.21	1.01	0.94
	Bulldozer	5	Diesel	350	0.05	2,080	182,000	182,000	10.21	1.01	0.94
	Excavator	5	Diesel	400	0.05	2,080	208,000	208,000	10.21	1.01	0.94
	Skid Steer	5	Diesel	100	0.05	2,080	52,000	52,000	10.21	1.01	0.94
	Total	19					587,600	587,600			Total

- Estimated based on information from similar projects.
- 2. Off-road mobile source fuel usage based on South Coast Air Quality Management District CEQA Air Quality Handbook, Table A9-3E.
- 3. Emission factors based on the U.S. EPA's Emission Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub, updated April 2022).

Decommissioning Solar Project - Mobile Sources

Decomissioning

Duration 1.00 Years (based

			Е	mission Factors	⁵ Total Emissions (ton)					Emissions per Year			
Onroad/Off- Road	Vehicle Type ¹	Number of Vehicles per Day ²	CO2 (kg/gal)	CH4 (g/mile)	N2O (g/mile)	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)
Onroad	Light Duty Vehicles - Laborers (commute)	25	8.78	0.007226	0.005213	55.15	0.0010	0.00075	55	55.1	0.00103	0.00075	55.395
	Light Duty Vehicles - Laborers (commute)	25	10.21	0.029	0.0214	80.88	0.0041	0.00306	82	80.9	0.00415	0.00306	81.897
	Heavy Duty Trucks - Dump Trucks (onsite and offsite)	5	10.21	0.0095	0.0431	28.33	0.0002	0.0009	29	28.3	0.00021	0.0009	28.617
	Heavy Duty Trucks - Semis (onsite and offsite)	8	10.21	0.0095	0.0431	13.00	0.0001	0.0004	13	13.0	0.00008	0.0004	13.114
					Total	177	0.005	0.005	179	177.4	0.00547	0.0051	179.0

- 1. Vehicle types are defined by the Federal Highway Administra
- 2. Laborers commute data provided by facility: Approximate 3 Assume half of the vehicles will be gas, half will be diesel.
- 3. Based on estimate from the facility.
- 4. For light duty vehicles, based on 2022 value from U.S. Dew.fhwa.dot.gov/policyinformation/statistics.cfm as of February 2022. For heavy duty vehicles, used value for "Single Unit Trucks" for Dump Trucks and "Combination Trucks" for Semis from Table VM-1.
- 5. Emission factors based on the U.S. EPA's Emission Facto

		•		Total Projec	t Emissions		Emissions Per Year			
Onroad/Offroad	Vehicle Type	Number of Vehicles ¹	CO2 (short ton)	CH4 (short ton)	N2O (short ton)	CO2e (short ton)	CO2 (short ton/yr)	CH4 (short ton/yr)	N2O (short ton/yr)	CO2e (short ton/yr)
Off-road	Crane	0	0.00	0.000	0.000	-	-	-		-
	Backhoe	0	0.00	0.000	0.000	-		-	-	-
	Loader	4	1635.23	0.162	0.151	1,684	1,635.2	0.1620	0.1508	1,684.2
	Bulldozer	5	2044.04	0.203	0.188	2,105	2,044.0	0.2025	0.1885	2,105.3
	Excavator	5	2336.05	0.231	0.215	2,406	2,336.0	0.2315	0.2154	2,406.0
	Skid Steer	5	584.01	0.058	0.054	602	584.0	0.0579	0.0538	601.5
	Total	19	6,599	0.654	0.609	6,797	6,599.3	0.65388	0.6085	6,797.0

- 1. Estimated based on information from similar projects.
- 2. Off-road mobile source fuel usage based on South Coast /
- 3. Emission factors based on the U.S. EPA's Emission Facto

Emission Factors for Greenhouse Gas Inventories

Blue text indicates an update from the 2023 version of this document.

Typically, greenhouse gas emissions are reported in units of carbon dioxide equivalent (CO₂e). Gases are converted to CO₂e by multiplying by their global warming potential (GWP). In most cases, the emission factors listed in this document generally have not been converted to CO₂e. To do so, multiply the emissions by the corresponding GWP listed in the table below.

Gas	100-Year GWP
CH ₄	28
N ₂ O	265

Source: Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report (AR5), 2013. See the source note to Table 11 for further explanation.

Notes:

These GWP values represent a change from the previous version of this document. In alignment with the U.S. Inventory of U.S. GHG Emissions and Sinks 1990-2021 Inventory Report, the recommended GWP values have been updated to Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report (AR5) values.

Table 1 Stationary Combustion

Fuel Type	Heat Content (HHV)	CO ₂ Factor	CH₄ Factor	N₂O Factor	CO ₂ Factor	CH₄ Factor	N₂O Factor
, , , .	mmBtu per short ton	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N₂O per mmBtu	kg CO ₂ per short ton	g CH ₄ per short ton	g N ₂ O per short
Coal and Coke							
Anthracite	25.09	103.69	11	1.6	2,602	276	40
Bituminous	24.93	93.28	11	1.6	2,325	274	40
Sub-bituminous	17.25	97.17	11	1.6	1,676	190	28
Lignite	14.21 21.39	97.72 94.27	11 11	1.6 1.6	1,389 2.016	156 235	23 34
Mixed (Commercial Sector) Mixed (Electric Power Sector)	19.73	94.27 95.52	11	1.6	1,885	235	32
Mixed (Industrial Coking)	26.28	93.90	11	1.6	2,468	289	42
Mixed (Industrial Sector)	22.35	94.67	11	1.6	2,116	246	36
Coal Coke	24.80	113.67	11	1.6	2.819	273	40
Other Fuels - Solid					, , ,		
Municipal Solid Waste	9.95	90.70	32	4.2	902	318	42
Petroleum Coke (Solid)	30.00	102.41	32	4.2	3,072	960	126
Plastics	38.00	75.00	32	4.2	2,850	1,216	160
Tires	28.00	85.97	32	4.2	2,407	896	118
Biomass Fuels - Solid	8.25	118.17	22 [4.2	975	264	35
Agricultural Byproducts Peat	8.00	111.84	32 32	4.2	895	256	34
Solid Byproducts	10.39	105.51	32	4.2	1,096	332	44
Wood and Wood Residuals	17.48	93.80	7.2	3.6	1,640	126	63
TOOG GIR TTOOU I CORGUIN	mmBtu per scf	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N₂O per mmBtu	kg CO₂ per scf	g CH ₄ per scf	g N ₂ O per scf
Natural Gas	por oor	-02 por minoro	9 4 p-> 111111240	0 z - p minoto		g por our	g2= por our
Natural Gas	0.001026	53.06	1.0	0.10	0.05444	0.00103	0.00010
Other Fuels - Gaseous							
Blast Furnace Gas	0.000092	274.32	0.022	0.10	0.02524	0.000002	0.000009
Coke Oven Gas	0.000599	46.85	0.48	0.10	0.02806	0.000288	0.000060
Fuel Gas	0.001388	59.00	3.0	0.60	0.08189	0.004164	0.000833
Propane Gas	0.002516	61.46	3.0	0.60	0.15463	0.007548	0.001510
Biomass Fuels - Gaseous Landfill Gas	0.000485	52.07	3.2	0.63	0.025254	0.001552	0.000306
Other Biomass Gases	0.000465	52.07	3.2	0.63	0.025254	0.002096	0.000306
Other Biolilass Gases	mmBtu per gallon	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N₂O per mmBtu	kg CO₂ per gallon	g CH₄ per gallon	g N₂O per gallon
Petroleum Products	minibita per ganon	ng oo ₂ por minibia	g orig per minibite	g 1420 per minibita	ng oog per ganon	g orig per ganon	g N2O per gunon
Asphalt and Road Oil	0.158	75.36	3.0	0.60	11.91	0.47	0.09
Aviation Gasoline	0.120	69.25	3.0	0.60	8.31	0.36	0.07
Butane	0.103	64.77	3.0	0.60	6.67	0.31	0.06
Butylene	0.105	68.72	3.0	0.60	7.22	0.32	0.06
Crude Oil	0.138	74.54	3.0	0.60	10.29	0.41	0.08
Distillate Fuel Oil No. 1	0.139	73.25	3.0	0.60	10.18	0.42	0.08
Distillate Fuel Oil No. 2	0.138	73.96	3.0	0.60	10.21	0.41	0.08
Distillate Fuel Oil No. 4 Ethane	0.146 0.068	75.04 59.60	3.0 3.0	0.60 0.60	10.96 4.05	0.44 0.20	0.09
Ethylene	0.058	65.96	3.0	0.60	3.83	0.17	0.03
Heavy Gas Oils	0.148	74.92	3.0	0.60	11.09	0.44	0.09
Isobutane	0.099	64.94	3.0	0.60	6.43	0.30	0.06
Isobutylene	0.103	68.86	3.0	0.60	7.09	0.31	0.06
Kerosene	0.135	75.20	3.0	0.60	10.15	0.41	0.08
Kerosene-Type Jet Fuel	0.135	72.22	3.0	0.60	9.75	0.41	0.08
Liquefied Petroleum Gases (LPG)	0.092	61.71	3.0	0.60	5.68	0.28	0.06
Lubricants	0.144	74.27	3.0	0.60	10.69	0.43	0.09
Motor Gasoline	0.125 0.125	70.22	3.0 3.0	0.60 0.60	8.78 8.50	0.38 0.38	0.08
Naphtha (<401 deg F) Natural Gasoline	0.125	68.02 66.88	3.0	0.60	7.36	0.38	0.08
Other Oil (>401 deg F)	0.110	76.22	3.0	0.60	10.59	0.42	0.07
Pentanes Plus	0.110	70.02	3.0	0.60	7.70	0.33	0.07
Petrochemical Feedstocks	0.125	71.02	3.0	0.60	8.88	0.38	0.08
Propane	0.091	62.87	3.0	0.60	5.72	0.27	0.05
Propylene	0.091	67.77	3.0	0.60	6.17	0.27	0.05
Residual Fuel Oil No. 5	0.140	72.93	3.0	0.60	10.21	0.42	0.08
Residual Fuel Oil No. 6	0.150	75.10	3.0	0.60	11.27	0.45	0.09
Special Naphtha	0.125	72.34	3.0	0.60	9.04	0.38	0.08
Unfinished Oils	0.139	74.54	3.0	0.60	10.36	0.42	0.08
Used Oil	0.138	74.00	3.0	0.60	10.21	0.41	0.08
Biomass Fuels - Liquid Biodiesel (100%)	0.128	73.84	1.1	0.11	9.45	0.14	0.01
Ethanol (100%)	0.126	68.44	1.1	0.11	5.75	0.14	0.01
Rendered Animal Fat	0.084	71.06	1.1	0.11	8.88	0.14	0.01
Vegetable Oil	0.120	81.55	1.1	0.11	9.79	0.13	0.01
Biomass Fuels -	0.123	31.00	1.1	0.11	0.70	0.10	2.01
Kraft Pulping Liquor, by Wood							
Furnish North American Softwood		94.4	1.9	0.42			
North American Hardwood	-	93.7	1.9	0.42			
Bagasse	-	95.5	1.9	0.42			
Bamboo	-	93.7	1.9	0.42			
Straw		95.1	1.9	0.42			
Source:							

Straw
Source:
Federal Register EPA: 40 CFR Part 98; e-CFR, (see link below), Table C-1 and Table C-2 (78 FR 71950, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016), Table AA-1 (78 FR 71965, Nov. 29, 2013).
https://www.ecfr.gov/current/bitle-40/chapter-l/subc

Table 2 Mobile Combustion CO₂

Fuel Type	kg CO₂ per unit	Unit
Aviation Gasoline	8.31	gallon
Biodiesel (100%)	9.45	gallon
Compressed Natural Gas (CNG)	0.05444	scf
Diesel Fuel	10.21	gallon
Ethanol (100%)	5.75	gallon
Kerosene-Type Jet Fuel	9.75	gallon
Liquefied Natural Gas (LNG)	4.50	gallon
Liquefied Petroleum Gases (LPG)	5.68	gallon
Motor Gasoline	8.78	gallon
Residual Fuel Oil	11 27	gallon

Source:
Federal Register EPA; 40 CFR Part 98; e-CFR, (see link below). Table C-1 (78 FR 71950, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016)
https://www.ecfr.gov/curren/title-40/chapter-Usubchapter-Cipart-98

Notes:
LNG: The factor was developed based on the CO₂ factor (kg CO2 per mmBtu) for Natural Gas from Table 1 and the higher heating value (HHV) LNG fuel density factor (btu/gallon) from the GREET1 2023 Model, Argonne National Laboratory published December 21, 2023 (Fuel_Specs worksheet).

More information on GREET can be found here: https://greet.anl.gov/greet_excel_model.models
The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions.

0.0530600 tCO2e/mmBtu

0.0739600 tCO2e/mmBtu

Table 3 Mobile Combustion CH₄ and N₂O for On-Road Gasoline Vehicles

Vehicle Type	Model Year	CH ₄ Factor (g CH ₄ / vehicle-mile)	N ₂ O Factor (g N ₂ O / vehicle-mile)
Gasoline Passenger Cars	1973-1974	0.1696	0.0197
	1975	0.1423	0.0443
	1976-1977	0.1406	0.0458
	1978-1979	0.1389	0.0473
	1980	0.1326	0.0499
	1981	0.0802	0.0626
	1982	0.0795	0.0627
	1983	0.0782	0.0630
	1984-1993	0.0704	0.0647
	1994	0.0617	0.0603
	1995	0.0531	0.0560
	1996	0.0434	0.0503
	1997	0.0337	0.0446
	1998	0.0240	0.0389
	1999	0.0215	0.0355
	2000	0.0175	0.0304
	2001	0.0105	0.0212
	2002	0.0102	0.0207
	2003	0.0095	0.0181
	2004	0.0078	0.0085
	2005	0.0075	0.0067
	2006	0.0076	0.0075
	2007	0.0072	0.0052
	2008	0.0072	0.0049
	2009	0.0071	0.0046
	2010	0.0071	0.0046
	2011	0.0071	0.0046
	2012	0.0071	0.0046
	2013	0.0071	0.0046
	2014	0.0071	0.0046
	2015	0.0068	0.0042
	2016	0.0065	0.0038
	2017	0.0054	0.0018
	2018	0.0052	0.0016
	2019	0.0051	0.0015
	2020	0.0050	0.0014
- Franklich Data 7	2021	0.0051	0.0014
soline Light-Duty Trucks	1973-1974	0.1908	0.0218
ns, Pickup Trucks, SUVs)	1975	0.1634	0.0513
	1976	0.1594	0.0555
	1977-1978	0.1614	0.0534
	1979-1980	0.1594	0.0555
	1981	0.1479	0.0660
	1982	0.1442	0.0681
	1983	0.1368	0.0722
	1984	0.1294	0.0764
	1985	0.1220	0.0806
	1986	0.1146	0.0848
	1987-1993	0.0813	0.1035
	1994	0.0646	0.0982
	1995	0.0517	0.0908
	1996	0.0452	0.0871
	1997	0.0452	0.0871
	1998	0.0412	0.0787
	1999	0.0333	0.0618
	2000	0.0340	0.0631
	2001	0.0221	0.0379
	2002	0.0242	0.0424
	2003	0.0221	0.0373
	2004	0.0115	0.0088
	2005	0.0105	0.0064
	2006	0.0108	0.0080
	2007	0.0103	0.0061
	2008	0.0095	0.0036
	2009	0.0095	0.0036
	2010	0.0095	0.0035
	2011	0.0096	0.0034
	2012	0.0096	0.0033
	2013	0.0095	0.0035
	2014	0.0095	0.0033
	2015	0.0094	0.0031
	2016	0.0091	0.0029
	2017	0.0084	0.0018
	2018	0.0081	0.0015
	2019	0.0080	0.0013
	2020	0.0079	0.0012
	2021	0.0079	0.0012
soline Heavy-Duty Vehicles	≤1980	0.4604	0.0497
	1981-1984	0.4492	0.0538
	1985-1986	0.4090	0.0515
	1987	0.3675	0.0849
	1988-1989	0.3492	0.0933
	1990-1995	0.3246	0.1142
	1996	0.1278	0.1680
	1997	0.0924	0.1726
	1998	0.0655	0.1750
	1999	0.0648	0.1724
	2000	0.0630	0.1660
	2001	0.0577	0.1468
	2002	0.0634	0.1673
	2003	0.0602	0.1553
	2004	0.0298	0.0164
	2005	0.0297	0.0083
	2006	0.0299	0.0241
	2007	0.0322	0.0015
	2008	0.0340	0.0015
	2009	0.0339	0.0015
	2010	0.0320	0.0015
	2011	0.0304	0.0015
	2012	0.0313	0.0015
	2013	0.0313	0.0015
	2014	0.0315	0.0015
	2015	0.0332	0.0021
	2016	0.0321	0.0061
	2017	0.0329	0.0084
	2018	0.0326	0.0082
	2019	0.0330	0.0091
	2020	0.0332	0.0100
	2021	0.0332	0.0100
see line Mater	1960-1995	0.0070	0.0083
asoline Motorcycles	1996-2005 2006-2020	0.0070	0.0083
urce: EPA (2023) Inventory of U.S. Gi	reenhouse Gas Emissions and Sinks: 1990-2		

Source: EPA (2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021 (Annexes). All values are calculated from Tables A-81 through A-85.

Notes:

The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions.

Table 4 Mobile Combustion CH₄ and N₂O for On-Road Diesel and Alternative Fuel Vehicles

Vehicle Type	Fuel Type	Model Year	CH ₄ Factor (g CH ₄ / vehicle-mile)	N ₂ O Factor (g N ₂ O / vehicle-mile)
		1960-1982	0.0006	0.0012
Passenger Cars	Diesel	1983-2006	0.0005	0.0010
		2007-2021	0.0302	0.0192
		1960-1982	0.0011	0.0017
Light-Duty Trucks	Diesel	1983-2006	0.0009	0.0014
		2007-2021	0.0290	0.0214
Medium- and Heavy-Duty Vehicles	Diesel	1960-2006	0.0051	0.0048
iviediditi- and fleavy-buty vericles	Diesei	2007-2021	0.0095	0.0431

Blue text indicates an update from the 2023 version of this document.

	Methanol	0.0130	0.0040
	Ethanol	0.0130	0.0040
Light-Duty Cars	CNG	0.1330	0.0040
	LPG	0.0130	0.0040
	Biodiesel	0.0360	0.0010
	Ethanol	0.0140	0.0050
	CNG	0.1440	0.0050
Light-Duty Trucks	LPG	0.0140	0.0050
	LNG	0.1440	0.0050
	Biodiesel	0.1270	0.0010
Medium-Duty Trucks	CNG	1.8070	0.0340
	LPG	0.1810	0.0340
	LNG	1.8070	0.0340
	Biodiesel	0.0400	0.0050
	Methanol	0.0730	0.0270
	Ethanol	0.0730	0.0270
Heavy-Duty Trucks	CNG	0.9210	0.0170
leavy-Duty Trucks	LPG	0.0920	0.0170
	LNG	0.9210	0.0170
	Biodiesel	0.0140	0.0020
	Methanol	0.1930	0.0290
	Ethanol	0.1930	0.0290
Buses	CNG	2.7530	0.0170
ouses	LPG	0.2750	0.0170
	LNG	2.7530	0.0170
	Biodiesel	0.0160	0.0030

Source: EPA (2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021 (Annexes). All values are calculated from Tables A-84 through A-85. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
Notes:

The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions.

Table 5 Mobile Combustion CH₄ and N₂O for Non-Road Vehicles

Vehicle Type	Fuel Type	CH ₄ Factor (g CH ₄ / gallon)	N₂O Factor (g N₂O / gallon)
	Residual Fuel Oil	1.10	0.3
Ships and Boats	Gasoline (2 stroke)	4.64 2.26	0.0
	Gasoline (4 stroke) Diesel	6.41	0.0
ti			• • • • • • • • • • • • • • • • • • • •
ocomotives	Diesel Jet Fuel	0.80	0.2
Aircraft	Aviation Gasoline	7.06	0.3
	Gasoline (2 stroke)	6.92	0.1
	Gasoline (2 stroke)	1.94	1.2
	Gasoline (4 stroke) Gasoline Off-Road Trucks	1.94	1.2
Agricultural Equipment ^A	Diesel Equipment	1.27	1.0
	Diesel Off-Road Trucks	0.91	0.5
	LPG	0.33	0.5
	Gasoline (2 stroke)	7.98	0.9
	Gasoline (2 stroke)	2.85	1.4
Construction/Mining Equipment ^B	Gasoline (4 stroke) Gasoline Off-Road Trucks	2.85	1.4
	Diesel Equipment	1.01	0.9
	Diesel Off-Road Trucks	0.91	0.5
	I PG	0.59	0.5
	Gasoline (2 stroke)	7.29	0.3
	Gasoline (4 stroke)	3.00	1.4
Lawn and Garden Equipment	Diesel	0.66	0.4
	I PG	0.41	0.6
	Gasoline	1.02	1.0
Airport Equipment	Diesel	1.89	1.1
	I PG	0.35	0.8
	Gasoline (2 stroke)	7.13	0.5
	Gasoline (4 stroke)	2.74	1.5
ndustrial/Commercial Equipment	Diesel	0.42	0.6
	LPG	0.44	0.6
	Gasoline (2 stroke)	9.68	• • • • • • • • • • • • • • • • • • • •
ogging Equipment	Gasoline (4 stroke)	3.24	2.0
33 3 1 1	Diesel	0.49	1,2
	Gasoline	3.24	1.8
Railroad Equipment	Diesel	0.40	0.9
	LPG	2.00	0.0
	Gasoline (2 stroke)	9.80	0.1
Samuelland Faulances	Gasoline (4 stroke)	2.72	1.4
Recreational Equipment	Diesel	0.73	0.6
	LPG	0.43	0.6

0.0102100 tCO2e/Gallon

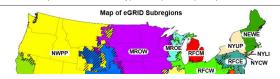
https://www.epa.gov/phpemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Notes:

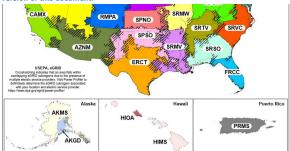
The factors represented in the table above represent combustion emissions only (lank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions

A includes equipment, such as tractors and combines, as well as fuel consumption from trucks that are used off-road in agriculture.

Includes equipment, such as cranes, dumpers, and excavators, as well as fuel consumption from trucks that are used off-road in construction.


Convert lbs to metric tonnes

0.00045359


Table 6 Electricity

		Tot	al Output Emission Factor	ors	Non-Bas	eload Emission Factors			
eGRID Subregion Acronym	eGRID Subregion Name	CO ₂ Factor	CH ₄ Factor	N₂O Factor	CO ₂ Factor	CH₄ Factor	N ₂ O Factor	tCO2e	tCO2e
•	_	(lb CO ₂ / MWh)	(lb CH ₄ / MWh)	(lb N ₂ O / MWh)	(lb CO ₂ / MWh)	(Ib CH ₄ / MWh)	(lb N ₂ O / MWh)	(lb / MWh)	t / MWh)
AKGD	ASCC Alaska Grid	1,052.1	0.088	0.012	1,224.5	0.123	0.017	1,052.11	0.48
AKMS	ASCC Miscellaneous	495.8	0.023	0.004	1,587.9	0.069	0.012	495.77	0.22
AZNM	WECC Southwest	776.0	0.051	0.007	1,205.2	0.065	0.009	776.04	0.35
CAMX	WECC California	497.4	0.030	0.004	1,055.0	0.049	0.006	497.44	0.23
ERCT	ERCOT All	771.1	0.049	0.007	1,194.9	0.067	0.009	771.08	0.35
FRCC	FRCC All	813.8	0.048	0.006	1,044.4	0.056	0.007	813.85	0.37
HIMS	HICC Miscellaneous	1,155.5	0.124	0.019	1,619.2	0.157	0.025	1,155.49	0.52
HIOA	HICC Oahu	1,575.4	0.163	0.025	1,810.3	0.177	0.028	1,575.41	0.71
MROE	MRO East	1,479.6	0.133	0.019	1,672.9	0.147	0.021	1,479.62	0.67
MROW	MRO West	936.5	0.102	0.015	1,794.7	0.183	0.026	936.49	0.42
NEWE	NPCC New England	536.4	0.063	0.008	923.3	0.073	0.010	536.43	0.24
NWPP	WECC Northwest	602.1	0.056	0.008	1,515.7	0.134	0.019	602.09	0.27
NYCW	NPCC NYC/Westchester	885.2	0.023	0.003	971.8	0.021	0.002	885.23	0.40
NYLI	NPCC Long Island	1,200.7	0.135	0.018	1,316.7	0.039	0.005	1,200.71	0.54
NYUP	NPCC Upstate NY	274.6	0.015	0.002	920.1	0.043	0.005	274.56	0.12
PRMS	Puerto Rico Miscellaneous	1,593.5	0.087	0.014	1,670.9	0.074	0.013	1,593.48	0.72
RFCE	RFC East	657.4	0.045	0.006	1,278.7	0.097	0.013	657.39	0.30
RFCM	RFC Michigan	1,216.4	0.116	0.016	1,597.3	0.149	0.021	1,216.40	0.55
RFCW	RFC West	1,000.1	0.087	0.012	1,843.6	0.178	0.026	1,000.05	0.45
RMPA	WECC Rockies	1,124.9	0.101	0.014	1,676.4	0.129	0.018	1,124.89	0.51
SPNO	SPP North	952.6	0.100	0.014	1,943.0	0.198	0.029	952.58	0.43
SPSO	SPP South	970.4	0.072	0.010	1,528.2	0.105	0.015	970.40	0.44
SRMV	SERC Mississippi Valley	801.0	0.040	0.006	1,220.7	0.073	0.010	801.02	0.36
SRMW	SERC Midwest	1,369.9	0.151	0.022	1,808.6	0.186	0.027	1,369.89	0.62
SRSO	SERC South	893.3	0.064	0.009	1,354.8	0.092	0.013	893.29	0.41
SRTV	SERC Tennessee Valley	933.1	0.082	0.012	1,671.0	0.152	0.022	933.07	0.42
SRVC	SERC Virginia/Carolina	623.0	0.047	0.007	1,308.8	0.099	0.014	622.99	0.28
US Average	US Average	823.1	0.066	0.009	1,405.3	0.107	0.015	823.15	0.37

US Average US Average 823.1 0.066 0.009 1.405.3 0.107 0.015
Source: EPA eGRID2022, January 2024 (Summary Tables - Table 1. Subregion Output Emission Rates)
https://www.epa.gov/system/filles/documents/2124-01/egrid2022 summary tables.xisx
Notes:
Notes:
Total output emission factors can be used as default factors for estimating GHG emissions from electricity use when developing a carbon footprint or emissions inventory. Annual non-baseload output emission factors should not be used when developing a carbon footprint or emissions inventory, but can be used to estimate GHG emissions reductions on the grid from changes in electricity use.
For technical information, reference the EPA's eGRID Technical Guide to the EPA's eGRID Technical Guide but https://www.epa.gov/system/filles/documents/2024-01/egrid2022 technical guide.pdf
The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions.

Blue text indicates an update from the 2023 version of this document.

Table 7 Steam and Heat

	CO ₂ Factor	CH ₄ Factor	N₂O Factor
	(kg CO ₂ / mmBtu)	(g CH ₄ / mmBtu)	(g N₂O / mmBtu)
Steam and Heat	66.33	1.250	0.125

Notes:

Emission factors are per mmBtu of steam or heat purchased. These factors assume natural gas fuel is used to generate steam or heat at 80 percent thermal efficiency.

The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions.

Scope 3 Emission Factors

Scope 3 Emission Factors
Scope 3 Emission Factors
Scope 3 Emission factors provided below are aligned with the Greenhouse Gas Protocol Technical Guidance for Calculating Scope 3 Emissions, version 1.0 (Scope 3 Calculation Guidance). Where applicable, the specific calculation method is referenced. Refer to the Scope 3 Calculation Guidance for more information (http://www.ghgprotocol.org/scope-3-technical-calculation-guidance)

Table 8 Scope 3 Category 4: Upstream Transportation and Distribution and Category 9: Downstream Transportation and Distribution

These factors are intended for use in the distance-based method defined in the Scope 3 Calculation Guidance. If fuel data are available, then the fuel-based method should be used, with factors from Tables 2 through 5.

Vehicle Type	CO ₂ Factor (kg CO ₂ / unit)	CH ₄ Factor (g CH ₄ / unit)	N₂O Factor (g N₂O / unit)	Units
Medium- and Heavy-Duty Truck	1.247	0.011	0.035	vehicle-mile
Passenger Car ^A	0.175	0.005	0.003	vehicle-mile
Liaht-Duty Truck ^B	0.955	0.026	0.023	vehicle-mile
Medium- and Heavy-Duty Truck ^C	0.168	0.0015	0.0047	ton-mile
Rail	0.022	0.0017	0.0005	ton-mile
Waterborne Craft	0.082	0.0326	0.0021	ton-mile
Aircraft	0.905	0	0.0279	ton-mile

Source:

C0₂ CN₄, and N₂O emissions data for road vehicles are from Table 2-13 of the EPA (April 2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021 data.

Vehicle-miles and passenger-miles data for road vehicles are from Table VM-1 of the Federal Highway Administration Highway Statistics (January 2024): 2021 data.

C0₂e emissions data for non-road vehicles are based on Table A-107 of the EPA (April 2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021 data, which are distributed into CO₂, CH₄, and N₂O emissions based on fuel/vehicle emission factors. Freight ton-mile data are from Table 1-50 of the Bureau of Transportation Statistics, National Transportation Statistics (June 2022): 2020 data.

Freight for-mile data are from Table 1-50 or the Bureau or Transportation Analysis and Products (Park Notes:

Whiche-mile factors are appropriate to use when the entire vehicle is dedicated to transportation of the product (Park Notes).

Whiche-mile factors are appropriate to use when the entire vehicle is dedicated to transportation of the product (Park Note Note).

The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions.

Changes from prior year values partially due to a methodology change in the allocation of emissions to vehicle type.

Apassenger car, includes passenger cars, mininars, SUVs, and small pickup trucks (vehicles with wheelbase less than 121 inches).

By Light-duty truck includes full-size pickup trucks, full-size vans, and extended-length SUVs (vehicles with wheelbase greater than 121 inches).

Million and Heavy-Duty Truck includes Combination Trucks and single frame trucks that have 2-Axles and at least 6 tires or a gross vehicle weight rating exceeding 10,000 lbs.

Table 9 Scope 3 Category 5: Waste Generated in Operations and Category 12: End-of-Life Treatment of Sold Products

These factors are intended for use in the waste-type-specific method or the average-data method defined in the Scope 3 Calculation Guidance for category 5 and category 12. Choose the appropriate material and disposal method from the table below. For the average-data method, use one of the mixed material types, such as mixed MSW.

	Metric Tons CO ₂ e / Short Ton Material					
Material	Recycled ^A	Landfilled ^B	Combusted [©]	Composted [□]	Anaerobically Digested (Dry Digestate with Curing)	Anaerobically Digested (Wet Digestate with Curing)
Aluminum Cans	0.06	0.02	0.01	NA.	NA NA	NA NA
Aluminum Ingot	0.04	0.02	0.01	NA	NA NA	NA NA
Steel Cans	0.32 0.18	0.02	0.01	NA.	NA NA	NA.
Copper Wire Glass	0.18	0.02 0.02	0.01 0.01	NA NA	NA NA	NA NA
HDPE	0.05	0.02	2.80	NA NA	NA NA	NA NA
LDPE	NA	0.02	2.80	NA NA	NA NA	NA NA
PET	0.23	0.02	2.05	NA NA	NA NA	NA NA
LLDPE	NA	0.02	2.80	NA NA	NA NA	NA NA
PP	0.20	0.02	2.80	NA NA	NA NA	NA NA
PS	NA.	0.02	3.02	NA NA	NA	NA NA
PVC	NA NA	0.02	1.26	NA NA	NA NA	NA NA
PLA	NA NA	0.02	0.01	0.13	NA	NA
Corrugated Containers	0.11	1.00	0.05	NA	NA	NA
Magazines/Third-class mail	0.02	0.46	0.05	NA	NA	NA NA
Newspaper	0.02	0.39	0.05	NA	NA	NA
Office Paper	0.02	1.41	0.05	NA	NA	NA
Phonebooks	0.04	0.39	0.05	NA	NA	NA NA
Textbooks	0.04	1.41	0.05	NA	NA	NA NA
Dimensional Lumber	NA	0.17	0.05	NA	NA	NA
Medium-density Fiberboard	NA	0.07	0.05	NA	NA	NA
Food Waste (non-meat)	NA	0.67	0.05	0.11	0.14	0.11
Food Waste (meat only)	NA.	0.69	0.05	0.11	0.14	0.11
Beef	NA NA	0.64	0.05	0.11	0.14	0.11 0.11
Poultry	NA NA	2.06	0.05 0.05	0.11 0.11	0.14 0.14	0.11
Grains Bread	NA NA	1.49	0.05	0.11	0.14	0.11
Fruits and Vegetables	NA NA	0.28	0.05	0.11	0.14	0.11
Dairy Products	NA NA	0.72	0.05	0.11	0.14	0.11
Yard Trimmings	NA NA	0.36	0.05	0.14	0.11	NA NA
Grass	NA NA	0.28	0.05	0.14	0.09	NA NA
Leaves	NA NA	0.28	0.05	0.14	0.12	NA NA
Branches	NA NA	0.58	0.05	0.14	0.15	NA.
Mixed Paper (general)	0.07	0.89	0.05	NA	NA	NA NA
Mixed Paper (primarily residential)	0.07	0.86	0.05	NA NA	NA	NA
Mixed Paper (primarily from offices)	0.03	0.84	0.05	NA	NA	NA
Mixed Metals	0.23	0.02	0.01	NA	NA	NA
Mixed Plastics	0.22	0.02	2.34	NA	NA	NA NA
Mixed Recyclables	0.09	0.75	0.11	NA	NA	NA
Food Waste	NA	0.68	0.05	0.11	NA.	NA NA
Mixed Organics	NA NA	0.54	0.05	0.13 NA	NA NA	NA NA
Mixed MSW		0.58	0.43		NA NA	
Carpet Desktop CPUs	NA 0.01	0.02 0.02	1.68 0.40	NA NA	NA NA	NA NA
Portable Electronic Devices	0.01	0.02	0.89	NA NA	NA NA	NA NA
Flat-panel Displays	0.02	0.02	0.09	NA NA	NA NA	NA NA
CRT Displays	NA	0.02	0.64	NA NA	NA NA	NA NA
Electronic Peripherals	0.05	0.02	2.23	NA NA	NA NA	NA NA
Hard-copy Devices	0.01	0.02	1.92	NA NA	NA	NA NA
Mixed Electronics	0.02	0.02	0.96	NA	NA.	NA
Clay Bricks	NA	0.02	NA	NA	NA	NA
Concrete	0.01	0.02	NA	NA	NA	NA
Fly Ash	0.01	0.02	NA	NA NA	NA	NA
Tires	0.10	0.02	2.21	NA	NA	NA
Asphalt Concrete	0.004	0.02	NA	NA	NA	NA
Asphalt Shingles	0.03	0.02	0.70	NA	NA NA	NA NA
Drywall	NA	0.02	NA	NA	NA	NA NA
Fiberglass Insulation	0.05	0.02	NA	NA	NA	NA NA
Structural Steel	0.04	0.02	NA	NA	NA	NA
Vinyl Flooring	NA	0.02	0.29	NA.	NA NA	NA
Wood Flooring Source:	NA	0.18	0.08	NA	NA	NA

Blue text indicates an update from the 2023 version of this document.

U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery (December 2023) Documentation for Greenhouse Gas Emission and Energy Factors used in the Waste Reduction Model (WARM). Factors from tables provided in the Management Practices Chapters and Background Chapt WARM Version 16, December 2023 release. Additional data provided by EPA, WARM-16 Background Data.

Notes:

Notes:
These factors do not include any avoided emissions impact from any of the disposal methods. All the factors presented here include transportation emissions, which are optional in the Scope 3 Calculation Guidance, with an assumed average distance traveled to the processing facility. ARA GMP values are used to convert all waste emission factors into CO₂e.

Short ton = 2000 lbs.

- A Recycling emissions include transport to recycling facility and sorting of recycled materials at material recovery facility. This is consistent with the GHG Protocol Scope 3 quidance, and includes the voluntary transportation emissions with an assumed average distance traveled to the processing facility.
- Recycling emissions include transport to exposing a recycling acid sorting or recycling acid sorting acid sorting or recycling acid sorting or recycling acid sorting acid sor processing facility.

Table 10 Scope 3 Category 6: Business Travel and Category 7: Employee Commuting

These factors are intended for use in the distance-based method defined in the Scope 3 Calculation Guidance. If fuel data are available, then the fuel-based method should be used, with factors from Tables 2 through 5.

Vehicle Type	CO ₂ Factor (kg CO ₂ / unit)	CH₄ Factor (g CH₄ / unit)	N₂O Factor (g N₂O / unit)	Units
Passenger Car A	0.175	0.005	0.003	vehicle-mile
Light-Duty Truck B	0.955	0.026	0.023	vehicle-mile
Motorcycle	0.377	0	0.019	vehicle-mile
Intercity Rail - Northeast Corridor C	0.058	0.0055	0.0007	passenger-mile
Intercity Rail - Other Routes C	0.150	0.0117	0.0038	passenger-mile
Intercity Rail - National Average C	0.113	0.0092	0.0026	passenger-mile
Commuter Rail D	0.133	0.0105	0.0026	passenger-mile
Transit Rail (i.e. Subway, Tram) E	0.093	0.0075	0.0010	passenger-mile
Bus	0.071	0	0.0021	passenger-mile
Air Travel - Short Haul (< 300 miles)	0.207	0.0064	0.0066	passenger-mile
Air Travel - Medium Haul (>= 300 miles, < 2300 miles)	0.129	0.0006	0.0041	passenger-mile
Air Travel - Long Haul (>= 2300 miles)	0.163	0.0006	0.0052	passenger-mile

CO₂, CH₄, and N₂O emissions data for highway vehicles are from Table 2-13 of the EPA (April 2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021 data.

CU₂, CH₄, and N₅U emissions data for highway ventices are from 1 aside 2-13 of WH-1 of the EPA (April 2023) (inventor of V exhibited-miles a sissions and a since 1 year. 1980–2021 data.

Fuel consumption data and passenger-miles data for highway ventices are from 1 abile 8.1.4.5. - 1.6. 1.0-10, and referred Highway Statistics (January 2024): 2021 data.

Fuel consumption data and passenger-miles data for rial are from Tables A.1.4.5. - 1.6. 1.0-10, and 7.3. - 7.4 of the Transportation Energy Data Book: Edition 40 (June 2022): 2019 data. Fuel consumption was converted to emissions by using fuel and electricity emission factors presented in the tables above. Interchyl Rall Encircips from Communication with Amtrack, March 2020. These are based on 10.3. - 7.4 of the Transportation Energy Data Book: Edition 40 (June 2022): 2019 data. Fuel consumption was converted to emissions by using fuel and electricity emission factors presented in the tables above. Interchyl Rall Encircips from Communication with Amtrack, March 2020. These are based on 10.3. - 7.4 of the Transportation Energy Data Book: Edition 40 (June 2022): 2019 data. Fuel consumption was converted to emissions by using fuel and electricity emission factors presented in the tables above. Interchyl Rall Encircips from Communication with Amtrack, March 2020. These are based on 10.3. - 7.4 of the Transportation Energy Data Book: Edition 40 (June 2022): 2019 data. Fuel consumption was converted to emissions by using fuel and electricity emission factors presented in the tables above. Interchyl Rall Encircips from Communication with Amtrack, March 2020. These are based on 10.3. - 7.4 of the Transportation Energy Data Book. Edition 40 (June 2022): 2019 data. Fuel consumption was converted to emissions by using fuel and electricity emission factors presented in the tables above. Interchyl Rall Energy Proceedings of the Proceeding

- Notes:
 The factors represented in the table above represent combustion emissions only (tank-to-wheel) and do not represent upstream emissions or well-to-wheel emissions. Changes from prior year values partially due to a methodology change in the allocation of emissions to vehicle type.

 A passenger car: includes passenger cars, minivans, SUVs, and small pickup trucks (vehicles with wheelbase less than 121 inches).

 By Light-duty truck: includes full-size pickup trucks, full-size vans, and extended-length SUVs (vehicles with wheelbase greater than 121 inches).

 Cintercity rail: A marka kong-distance rail between major cities. Northeast Corridor extends from Boston to Washington D. C. Other Routes are all routes outside the Northeast Corridor.

 Commuter rail: rail service between a central city and adjacent suburbs (also called regional rail or suburban rail).
- E Transit rail: rail typically within an urban center, such as subways, elevated railways, metropolitan railways (metro), streetcars, trolley cars, and tramways

Table 11 Global Warming Potential (GWP)

Industrial Designation or Common Name	Chemical Formula	100-Year GWP
Carbon dioxide	CO ₂	1
Methane	CH ₄	28
Nitrous oxide	N ₂ O	265
HFC-23	CHF ₃	12,400
HFC-32	CH ₂ F ₂	677
HFC-41	CH ₃ F	116
HFC-125	CHF ₂ CF ₃	3,170
HFC-134	CHF ₂ CHF ₂	1,120
HFC-134a	CH ₂ FCF ₃	1,300
HFC-143	CH ₂ FCHF ₂	328
HFC-143a	CH ₃ CF ₃	4,800
HFC-152	CH ₂ FCH ₂ F	16
HFC-152a	CH ₃ CHF ₂	138
HFC-161	CH ₃ CH ₂ F	4
HFC-227ea	CF ₃ CHFCF ₃	3,350
HFC-236cb	CH ₂ FCF ₂ CF ₃	1,210
HFC-236ea	CHF ₂ CHFCF ₃	1,330
HFC-236fa	CF ₃ CH ₂ CF ₃	8,060
HFC-245ca	CH ₂ FCF ₂ CHF ₂	716
HFC-245fa	CHF ₂ CH ₂ CF ₃	858
HFC-365mfc	CH ₃ CF ₂ CH ₂ CF ₃	804
HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	1,650
Sulfur hexafluoride	SF ₆	23,500
Nitrogen trifluoride	NF ₃	16,100
PFC-14	CF ₄	6,630
PFC-116	C ₂ F ₆	11,100
PFC-218	C ₃ F ₈	8,900
PFC-318	c-C ₄ F ₈	9,540
PFC-31-10	C ₄ F ₁₀	9,200
PFC-41-12	C ₅ F ₁₂	8,550
PFC-51-14	C ₆ F ₁₄	7,910
PFC-91-18	C ₁₀ F ₁₈	7,190

source:
100-year GWP values from IPCC Fifth Assessment Report (ARS), 2013. Chapter 8, Table 8.4.1, Lifetimes, Radiative Efficiencies and Metric Values.
IPCC ARS was published in 2013 and is among the most current and comprehensive peer-reviewed assessments of climate change. ARS provides revised GWP values of several GHGs relative to the values provided in previous assessment reports, following advances in scientific knowledge on the radiative efficiencies and atmospheric lifetimes of these GHGs.

Table 12 Global Warming Potential (GWP) for Blended Refrigerants

ASHRAE #	100-year GWP	Blend Composition
R-401A		53% HCFC-22 , 34% HCFC-124 , 13% HFC-152a
R-401B		61% HCFC-22 , 28% HCFC-124 , 11% HFC-152a
R-401C		33% HCFC-22 , 52% HCFC-124 , 15% HFC-152a
R-402A		38% HCFC-22 , 60% HFC-125 , 2% propane
R-402B		60% HCFC-22, 38% HFC-125, 2% propane
R-403B		56% HCFC-22 , 39% PFC-218 , 5% propane
R-404A		44% HFC-125 , 4% HFC-134a , 52% HFC-143a
R-406A		55% HCFC-22 , 41% HCFC-142b , 4% isobutane
R-407A		20% HFC-32 , 40% HFC-125 , 40% HFC-134a
R-407B		10% HFC-32, 70% HFC-125, 20% HFC-134a
R-407C		23% HFC-32 , 25% HFC-125 , 52% HFC-134a
R-407D		15% HFC-32 , 15% HFC-125 , 70% HFC-134a
R-408A		47% HCFC-22 , 7% HFC-125 , 46% HFC-143a
R-409A		60% HCFC-22, 25% HCFC-124, 15% HCFC-142b
R-410A		50% HFC-32, 50% HFC-125
R-410B	2,048	45% HFC-32 , 55% HFC-125
R-411A		87.5% HCFC-22, 11% HFC-152a, 1.5% propylene
R-411B		94% HCFC-22, 3% HFC-152a, 3% propylene
R-414A		51% HCFC-22 , 28.5% HCFC-124 , 16.5% HCFC-142b , 4% isobutane
R-414B		50% HCFC-22 , 39% HCFC-124 , 9.5% HCFC-142b , 1.5% isobutane
R-417A		46.6% HFC-125 , 50% HFC-134a , 3.4% butane
R-422A		85.1% HFC-125 , 11.5% HFC-134a , 3.4% isobutane
R-422D		65.1% HFC-125 , 31.5% HFC-134a , 3.4% isobutane
R-424A		50.5% HFC-125 , 47% HFC-134a , 1% butane , 0.9% isobutane , 0.6% isopentane
R-426A		5.1% HFC-125 , 93% HFC-134a , 1.3% butane , 0.6% isobutane
R-428A		77.5% HFC-125 , 20% HFC-143a , 1.9% isobutane , 0.6% propane
R-434A		63.2% HFC-125 , 16% HFC-134a , 18% HFC-143a , 2.8% isobutane
R-507A		50% HFC-125 , 50% HFC-143a
R-508A		39% HFC-23 , 61% PFC-116
R-508B	11,698	46% HFC-23 , 54% PFC-116

Emission Factors for Greenhouse Gas Inventories Last Modified: 13 February 2024 Blue text indicates an update from the 2023 version of this document.

Source:

100-year GWP values from IPCC Fifth Assessment Report (AR5), 2013. Chapter 8, Table 8 A.1, Lifetimes, Radiative Efficiencies and Metric Values.

GWP values of blended refrigerants are based only on their HFC and PFC constituents, which are based on data from https://www.epa.gov/snap/compositions-refrigerant-blends.