Appendix K Greenhouse Gas Calculations Appendix K Greenhouse Gas Calculations **Table 1. Summary of Operations GHG Emissions** | Emission Source | CO ₂
(metric
tons/year) | CH₄
(metric
tons/year) | N₂O
(metric
tons/year) | CO ₂ e ^[1]
(metric
tons/year) | |------------------------|--|------------------------------|------------------------------|---| | Direct Sources | | | | | | Mobile Combustion | 7.63 | 3.30E-04 | 6.72E-05 | 7.66 | | Land Use Change | | | | 1,342.76 | | Indirect Sources | | | | | | Electrical Consumption | 19.54 | 2.10E-03 | 2.94E-04 | 19.68 | | TOTAL - ALL SOURCES | 27.18 | 2.43E-03 | 3.62E-04 | 1,370.11 | [1] CO_2e calculated by equation A-1 of 40 CFR 98.2, which states the total CO_2e is equal to the GWP for each pollutant multiplied by the potential pollutant emissions. The GWP for CO_2 is 1, CH_4 is 25, and N_2O is 298. Table 2. Conversions | Unit | Amount | Unit | |---------------------------------|-------------|-------------| | 1 US ton | 2000 | lbs | | 1 US ton | 0.907185 | metric tons | | 1 US ton | 907.185 | kg | | 1 US ton | 907185 | grams | | 1 lb | 453.592 | grams | | 1 MWh | 1000 | kWh | | 1 hectare | 2.47105 | acres | | 1 US gallon of diesel | 144.945 | MJ | | 1 MJ | 0.372506136 | hp-h | | 1 US gallon of diesel | 53.9929019 | hp-h | | Heating Value of Fuel | 137030 | Btu/gal | | Break-specific fuel consumption | 7000 | Btu/hp-hr | **Table 3. Global Warming Potentials** | Greenhouse Gas
Name | CAS Number | Chemical
Formula | Global Warming Potential
(100-yr.)[1] | |------------------------|------------|---------------------|--| | Carbon dioxide | 124–38–9 | CO ₂ | 1 | | Methane | 74–82–8 | CH₄ | 25 | | Nitrous oxide | 10024–97–2 | N₂O | 298 | ^[1] Table A-1 to Subpart A of Part 98, Title 40, https://www.ecfr.gov/current/title-40/part-98/appendix-Table A-1 to Subpart A of Part 98 Table 4. Operations Emissions from Fuel Combustion Sources | Fuel Type ^[1] | Fuel Consumption ^{[1], [2]}
(gallons/year) | CO ₂ Emission
Factor ^[2]
(kg/gallon) | CH ₄ Emission
Factor ^[3]
(g/gallon) | N₂O Emission
Factor ^[3]
(g/gallon) | CO ₂
(metric tons/year) | CH ₄
(metric tons/year) | N₂O
(metric
tons/year) | CO ₂ e ^[4]
(metric
tons/year) | |--------------------------|--|--|---|---|---------------------------------------|---------------------------------------|------------------------------|---| | Gasoline | 839 | 8.78 | 0.38 | 0.08 | 7.37 | 3.19E-04 | 6.72E-05 | 7.40 | | Diesel | 30 | 8.78 | 0.38 | 0.08 | 0.26 | 1.13E-05 | 2.38E-06 | 0.26 | | TOTAL | | | | | 7.63 | 3.30E-04 | 6.95E-05 | 7.66 | ^[1] Barr estimated based on professional experience with similar project types. ^[2] Fuel consumption for the diesel geneator was calculated based on a typical emergency generator engine output of 50 Hp, a diesel heating value of 137,030 Btu/gal, conversion of 7,000 Btu/hp-hr, and 12 hours per year of operation. ^[3] Table 2, Mobile Combustion CO2. Emission Factors for Greenhouse Gas Inventories, EPA CCCL. April, 2023. https://www.epa.gov/climateleadership/ghg-emission-factors-hub ^[4] Table 5, Mobile Combustion CH4 and N2O for Non-Road Vehicles. Emission Factors for Greenhouse Gas Inventories, EPA CCCL. April, 2023. https://www.epa.gov/climateleadership/ghg-emission-factors-hub ^[5] CO₂e calculated by equation A-1 of 40 CFR 98.2, which states the total CO₂e is equal to the GWP for each pollutant multiplied by the potential pollutant emissions. The GWP for CO₂ is 1, CH₄ is 25, and N₂O is 298. ## AES ## Birch Coulee Solar Project **GHG Calculations** Table 5. Operations Emissions from Electrical Consumption | Temporary
Facility | Energy
Consumption ^[1]
(kWh/year) | eGRID
Subregion | CO ₂ Emission
Factor ^[2]
(lb/MWh) | CH ₄ Emission
Factor ^[2]
(lb/MWh) | N ₂ O Emission
Factor ^[2]
(lb/MWh) | CO ₂
(metric
tons/year) | CH₄
(metric
tons/year) | N ₂ O
(metric
tons/year) | CO ₂ e ^[3]
(metric
tons/year) | |-----------------------|--|--------------------|---|---|--|--|------------------------------|---|---| | Operations | 43269 | MROW | 995.8 | 0.107 | 0.015 | 19.54 | 2.10E-03 | 2.94E-04 | 19.68 | | TOTAL | | | | | | 19.54 | 2.10E-03 | 2.94E-04 | 19.68 | ^[1] Barr estimated based on professional experience with similar project types ^[2] Table 6, Electricity. Emission Factors for Greenhouse Gas Inventories, EPA CCCL. April, 2023. https://www.epa.gov/climateleadership/ghg-emission-factors-hub ^[3] CO₂e calculated by equation A-1 of 40 CFR 98.2, which states the total CO₂e is equal to the GWP for each pollutant multiplied by the potential pollutant emissions. The GWP for CO₂ is 1, CH₄ is 25, and N₂O is 298. #### Birch Coulee Solar Project **GHG Calculations** Table 6. Land Use Change Emissions | Permanent Land Use Change ^[1] | Area of Land Change ^[1] (acres) | 2021 Net CO ₂ Flux for Converted Land
Type ^{[2][3]}
(M metric tons CO ₂ e) | 2021 Total US Land Use Change from Forest
Land ^[4]
(thousands of hectares) | CO ₂ e Emission Factor
(metric tons CO ₂ e/acre) | CO ₂ e ^[5]
(metric tons/year) | | |--|--|---|---|---|--|--| | Forest Land to Settlement | - | 63.7 | 456 | 56.53 | - | | | Cropland to Settlement | 768.21 | 5.9 | 1,366 | 1.75 | 1,342.76 | | | Wetlands to Settlement | - | 0.3 | 14 | 8.67 | - | | | Grassland to Settlement | - | 12.2 | 1,830 | 2.70 | - | | | TOTAL | 768.21 | 82.10 | 3,666.00 | 69.65 | 1,342.76 | | ^[1] Estimated from development area delineation files and NLCD land cover estimates. ^[2] Table 6-129. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 ^[3] Table 6-44. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 ^[4] Table 6-5: Land Use and Land-Use Change for the U.S. Managed Land Base for All 50 States, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 #### **AES** ### **Birch Coulee Solar Project** **GHG Calculations** #### Table 7. Avoided GHG Emissions | Temporary Facility | Energy Consumption ^[1]
(MWh/year) | eGRID State | CO ₂ Emission
Factor ^[2]
(lb/MWh) | CH ₄ Emission
Factor ^[2]
(lb/MWh) | N₂O Emission
Factor ^[2]
(lb/MWh) | CO ₂
(metric
tons/year) | CH₄
(metric
tons/year) | N₂O
(metric
tons/year) | CO ₂ e ^[3]
(metric
tons/year) | |--------------------|---|-------------|---|---|---|--|------------------------------|------------------------------|---| | Operations | 263,684 | Minnesota | 825.973 | 0.082 | 0.012 | 98,790.57 | 9.81 | 1.44 | 99,463.47 | | TOTAL | | | | | | 98,790.57 | 9.81E+00 | 1.44E+00 | 99,463.47 | ^[1] Barr estimated based on professional experience with similar project types ^[2] U.S. eGrid Factors, 2023 Update, Total Output Emissions Rates for Minnesota, metric tonne/MWh; https://www.epa.gov/egrid/download-data ^[3] CO₂e calculated by equation A-1 of 40 CFR 98.2, which states the total CO₂e is equal to the GWP for each pollutant multiplied by the potential pollutant emissions. The GWP for CO₂ is 1, CH₄ is 25, and N₂O is 298.