Before the Office of Administrative Hearings 600 North Robert Steet Saint Paul, Minnesota 55101

For the Minnesota Public Utilities Commission 121 Seventh Place East, Suite 350 Saint Paul, Minnesota 55101

IN THE MATTER OF THE PETITIONS FOR RECOVERY OF CERTAIN GAS COSTS	OAH Docket No. 71-2500-37763
IN THE MATTER OF THE PETITION OF CENTERPOINT ENERGY FOR APPROVAL OF A RECOVERY PROCESS FOR COST IMPACTS DUE TO FEBRUARY EXTREME GAS MARKET CONDITIONS	MPUC Docket No. G008/M-21-138
IN THE MATTER OF THE PETITION BY GREAT PLAINS NATURAL GAS CO., A DIVISION OF MONTANA-DAKOTA UTILITIES CO., FOR APPROVAL OF RULE VARIANCES TO RECOVER HIGH NATURAL GAS COSTS FROM FEBRUARY 2021	MPUC Docket No. G004/M-21-235
IN THE MATTER OF A PETITION OF NORTHERN STATES POWER COMPANY D/B/A XCEL ENERGY TO RECOVER FEBRUARY 2021 NATURAL GAS COSTS	MPUC Docket No. G002/CI-21-610
IN THE MATTER OF THE PETITION OF MINNESOTA ENERGY RESOURCES CORPORATION FOR APPROVAL OF A RECOVERY PROCESS FOR COST IMPACTS DUE TO FEBRUARY EXTREME GAS MARKET CONDITIONS	MPUC Docket No. G011/CI-21-611

PREFILED DIRECT TESTIMONY OF BRADLEY CEBULKO ON BEHALF OF THE CITIZENS UTILITY BOARD OF MINNESOTA Exhibit ___(BC-D)

December 22, 2021

Contents

I.	Introduction	
II.	Testimony Overview	6
a.	CenterPoint	8
b.	. MERC	9
c.	Xcel	11
III.	February Event Timeline	
a.	Conditions Before the February Event	12
b.	. Conditions During the February Event	21
c.	Utility Knowledge and Associated Actions	23
IV.	Load Forecasting and Supply Planning	
V.	Storage Optimization	50
a.	CenterPoint	51
b.	. MERC	54
c.	Xcel	54
d.	. Load Forecasting and Storage Disallowance Recommendations	57
VI.	Interruptible Customer Curtailment	60
a.	CenterPoint	
b.	. MERC	67
c.	Xcel	72
d.	. Interruption Disallowance Recommendations	74
VII	. Peaker Plant Dispatch	79
a.	CenterPoint	
b.	. Xcel	
c.	Peaker Dispatch Disallowance Range Recommendations	

Exhibit List

See exhibit list attachment

PREFILED DIRECT TESTIMONY OF

BRADLEY CEBULKO

ON BEHALF OF THE CITIZENS UTILITY BOARD OF MINNESOTA

I. Introduction

1	Q1.	Please state your name and position.
2	A1.	My name is Bradley Cebulko. I am a Senior Consultant at Strategen Consulting
3		located at 2150 Allston Way Suite 400, Berkeley, California 94704.
4	Q2.	On whose behalf are you testifying?
5	A2.	I am testifying on behalf of the Citizens Utility Board of Minnesota ("CUB").
6	Q3.	Are you sponsoring any schedules?
7	A3.	Yes. Please see the Exhibit list attached to this testimony, Schedules 1-37.
8	Q4.	Please describe your formal education and professional experience.
8 9	Q4. A4.	Please describe your formal education and professional experience. I am a Senior Consultant at Strategen Consulting. At Strategen, I work with
	-	
9	-	I am a Senior Consultant at Strategen Consulting. At Strategen, I work with
9 10	-	I am a Senior Consultant at Strategen Consulting. At Strategen, I work with consumer advocates, non-governmental organizations, and commissions on utility
9 10 11	-	I am a Senior Consultant at Strategen Consulting. At Strategen, I work with consumer advocates, non-governmental organizations, and commissions on utility regulatory issues including new regulatory business models and integrated
9 10 11 12	-	I am a Senior Consultant at Strategen Consulting. At Strategen, I work with consumer advocates, non-governmental organizations, and commissions on utility regulatory issues including new regulatory business models and integrated resource planning.

1		planning (IRP), electric and natural gas energy efficiency programs, and new
2		program design and implementation. I was the Staff lead for natural gas IRPs.
3		From 2016-2021, I was an Advisor to the Commissioners, where I led the
4		Commissioners' review of major filings and adjudications, natural gas general
5		rate cases, purchase gas adjustments, rulemakings, and natural gas integrated
6		resource plans.
7		I have a Master's in Public Policy and Governance from the University of
8		Washington and a Bachelor of Arts in Political Science from Colorado State
9		University. My resume is attached as Exhibit(BC-D), Schedule 1.
10	Q5.	Have you previously testified before the Public Utility Commission?
11	A5.	No, I have not previously testified before the Minnesota Public Utility
12		Commission, but I have testified before the Washington State Utilities and
13		Transportation Commission. Before the Washington UTC, I filed testimony on
14		service quality and reliability metrics in 2014 and 2015, and in 2016 on a utility's
15		proposed appliance leasing program. ¹
16	0(
	Q6.	Do you have any other relevant experience?
17	Q6. A6.	Do you have any other relevant experience? Yes, from September 2016 until August 2021, I served as an Advisor to the
17 18	-	
	-	Yes, from September 2016 until August 2021, I served as an Advisor to the
18	-	Yes, from September 2016 until August 2021, I served as an Advisor to the Washington State Commissioners, where I led the Commissioners' review of

¹ UE-140188 & UG-140189, UE-150204 & UG-150205, and UE-151871 & UG-151872

alongside the Administrative Law Judges to write dozens of Commission orders. I
 also led the Commissioners review of electric and natural gas integrated resource
 plans.

II. <u>Testimony Overview</u>

4	Q7.	What is the purpose of your testimony?
5	A7.	The purpose of my testimony is to analyze the specific actions CenterPoint,
6		MERC, and Xcel's took in the lead up to and during the February Event ("the
7		Event"). ² If in my analysis I determine that a utility acted imprudently, I propose a
8		range of disallowances for that issue. My approach is holistic and recognizes the
9		inter-dependencies of each of the utility's decisions. For instance, any assumption
10		I make on how a utility uses its storage will impact how it should optimize its
11		peaking resources.
12	Q8.	How is your testimony organized?
13	A8.	I begin with a timeline of events covering what the utilities knew and when. Then,
14		I analyze four areas that are key to the utilities decision-making during the Event:
15		1) load forecasting, 2) storage optimization, 3) curtailment, and 4) peaking
16		facilities optimization. For issues that I believe a utility made an imprudent
17		decision, I propose a range of disallowances.

18

Q9. Please summarize your key conclusions and recommendations.

² Strategen did not review the actions of Great Plains in this case.

1	A9.	Based on my analysis, I found that CenterPoint, MERC, and Xcel each made
2		imprudent decisions leading up to and during the Event. Each utility is differently
3		situated and responded differently to the Event, so I will address each
4		individually. However, there are certain facts that were apparent to all the utilities
5		leading up to and during the Event that should have impacted their decision-
6		making.
7		1. Due to the structure of the natural gas market, the utilities had to procure
8		ratable natural gas on February 12 for the four-day period of February 13-16.
9		As such, the utilities must plan to meet the highest load day (February 14)
10		during the four-day weekend.
11		The utilities knew that there was significant market uncertainty and were
12		already experiencing high natural gas prices (greater than \$15/Dth) when they
13		developed their supply plans for the four-day weekend (February $13 - 16$) on
14		February 11 and 12.
15		2. On February 16, during the Event, natural gas prices were at unprecedented
16		levels with Demarc and Ventura settling at \$133.64 and \$188.32, respectively.
17		However, the utilities did not sufficiently modify their plans or actions for
18		supplying gas to customers February 17, even knowing the extent of the
19		storm, the impact to the natural gas market, and the extraordinary, incremental
20		costs they had already incurred and planned to pass onto customers.
21		3. Reasonably accurate load forecasting was important for avoiding
22		extraordinary index natural gas prices immediately before and during the

1		Event. MERC and Xcel's overly conservative load forecasts led to the over-
2		procurement of gas that was indexed at the daily price, which forced the two
3		utilities to ramp down storage to a larger degree than would have been
4		necessary with better planning. This resulted in exorbitant costs for customers.
5	4.	All the utilities can curtail their interruptible customers for economic
6		purposes, such as responding to a price spike, and should have utilized that
7		option during the Event.
8	5.	The utilities could have, and should have, dispatched their peaking facilities to
9		respond to the Event.
10		I also examined each utility's individual actions and came to utility-specific
11		conclusions based on my analysis. Below, I summarize my findings for each
12		utility and identify a range of disallowances.
12		utility and identify a range of disallowances. a. CenterPoint
12 13	1.	
	1.	a. CenterPoint
13	1.	a. CenterPoint CenterPoint should have curtailed all interruptible load during the entirety of
13 14	1.	a. CenterPoint CenterPoint should have curtailed all interruptible load during the entirety of the Event. There was no operational or tariff restriction that would have
13 14 15	1.	a. CenterPoint CenterPoint should have curtailed all interruptible load during the entirety of the Event. There was no operational or tariff restriction that would have prevented the utility from curtailing for economic reasons. I estimate that
13 14 15 16	1.	a. CenterPoint CenterPoint should have curtailed all interruptible load during the entirety of the Event. There was no operational or tariff restriction that would have prevented the utility from curtailing for economic reasons. I estimate that curtailing all interruptible customers would have saved customers \$73 million
13 14 15 16 17		a. CenterPoint CenterPoint should have curtailed all interruptible load during the entirety of the Event. There was no operational or tariff restriction that would have prevented the utility from curtailing for economic reasons. I estimate that curtailing all interruptible customers would have saved customers \$73 million over the five-day Event, and \$17.5 million on February 17 alone.
13 14 15 16 17 18		a. CenterPoint CenterPoint should have curtailed all interruptible load during the entirety of the Event. There was no operational or tariff restriction that would have prevented the utility from curtailing for economic reasons. I estimate that curtailing all interruptible customers would have saved customers \$73 million over the five-day Event, and \$17.5 million on February 17 alone. CenterPoint had reasonable load forecasting throughout the Event and appears

1		customers and adequately maintain reliability. I estimate that better use of the
2		peaking facilities could have saved customers between \$12.2 million and
3		\$122.6 million over the five-day Event, and between \$12.2 million and \$25
4		million on February 17 alone.
5	4.	In total, I estimate that CenterPoint could have saved customers between
6		\$29.6 million and \$196 million if it had better optimized its resource portfolio
7		during the Event.

8 Table 1: CenterPoint Disallowance Range

CenterPoint Disallowance Estimate Range			
Curtailment 100% called (95% responsive)			
2/13 - 2/17	\$73,602,994		
2/17 Only	\$17,468,247		
Load forecasting and storage optimization	None		
Peaking optimization	50% LNG, 25% Propane	100% LNG, 50% propane	
2/13 - 2/17	\$56,809,146	\$122,653,731	
2/17 Only	\$12,214,984 \$24,923,313		
2/13 – 2/17 Total	\$130,412,140	\$196,256,724	
2/17 Only Total	\$29,683,231	\$42,391,560	

9

b. MERC

MERC should have curtailed 50 percent of its interruptible load during the
 entirety of the Event. There was no operational or tariff restriction that would

1		have prevented the utility from curtailing for economic reasons. I estimate that
2		curtailing all interruptible customers would have saved customers \$4 million
3		over the five-day Event, and \$820,000 on February 17.
4	2.	MERC imprudently relied on overly conservative load forecasts for the
5		critical planning days of February 14 and 17. The Company's estimated
6		forecast error on February 14 and 17 are 9.95 percent and 34.32 percent,
7		respectively. The Company subsequently purchased more spot gas and took
8		more call options at unprecedented prices rather than optimizing its existing
9		storage. I estimate that MERC could have saved customers between \$8.5
10		million and \$18 million with better load forecasting.
11	3.	MERC does not own or contract with any peaking facilities.
12	4.	I estimate that MERC could have saved customers between \$9.3 million and
13		\$22.1 million if it had better optimized its resource portfolio during the Event.

14 Table 2: MERC Disallowance Range

MERC Disallowance Estimate Range			
Curtailment	50% Interrupted		
2/13 - 2/17	\$4,083,076		
2/17 Only	\$820,184		
Load Forecasting Error and Storage Optimization	5% Forecasting Error	10% Forecasting Error	
2/13 - 2/17	\$18,028,508	\$8,454,945	
2/17 Only	\$10,202,942	\$8,454,945	
Peaking Facilities	N/A	N/A	

2/13 – 2/17 Total	\$22,111,585	\$12,538,021
2/17 Only Total	\$11,023,127	\$9,275,129

c. Xcel

2	1. Xcel curtailed all interruptible customers at the beginning of the Event, which
3	saved customers tens of millions of dollars. However, the Company started
4	releasing interruptible customers on February 17 while prices were still
5	unprecedented. Had Xcel not released some customers on February 17, I
6	estimate that the Company could have saved customers \$1.6 million.
7	2. Xcel imprudently chose to base its supply plans on load forecasts that
8	included interruptible customers, and which did not accurately represent the
9	firm load served by the Company. Had Xcel relied on load forecasts that
10	excluded curtailed customers, the Company's would have been able to see that
11	its supply plan exceeded expected firm load by 11 percent and 9 percent on
12	February 14 and 17, respectively. Had Xcel built its supply plans off more
13	accurate load forecasts, I estimate the Company could have saved customers
14	between \$1.5 million and \$9.7 million.
15	3. Xcel does not sufficiently justify that they properly maintained and prepared
16	their LNG facility, Wescott, for use during the 2020-2021 winter season.
17	4. I estimate that Xcel could have saved customers between \$5.7 million and
18	\$127 million if it had better optimized its resource portfolio during the Event.

		Xcel Disa	llowance Estim	ate Range		
Curtailment		Additio	onal Curtailment	2/17 (95% responsive)		
2/13 - 2/17	\$1,58		35,125			
2/17 Only	\$1,58		35,125			
Load forecasting and storage optimization	5% Forecasting Error		10% Forecasting Error			
2/13 - 2/17	\$9,734,465			\$1,513,382		
2/17 Only	\$4,836,909		\$1,513,382			
Peaking Facilities	Propane 50%, only	LNG 50%, Propane 25%	LNG 100%, Propane 50%	Propane 50%, only	LNG 50%, Propane 25%	LNG 100%, Propane 50%
2/13 - 2/17	\$14,311,286	\$57,895,657	\$115,791,314	\$14,311,286	\$57,895,657	\$115,791,314
2/17 only	\$2,488,873	\$10,068,623	\$20,137,247	\$2,488,873	\$10,068,623	\$20,137,247
-			Γ			Γ
2/13 – 2/17 Total	\$25,630,876	\$69,215,247	\$127,110,904	\$15,824,669	\$60,994,164	\$118,889,821
2/17 Only Total	\$8,910,908	\$16,490,658	\$26,559,281	\$5,587,380	\$13,167,130	\$23,235,754

1 Table 3: Xcel Disallowance Range

2

III. February Event Timeline

a. Conditions Before the February Event

Q10. What is the purpose of this section of your testimony?

1	A10.	The purpose of this section of my testimony is to establish a clear timeline of
2		utility knowledge and actions during the February Event. Key facts discussed in
3		this section include weather forecasts, price changes, gas supply, market
4		conditions, and associated utility actions and decisions informed by these pieces
5		of information.
6	Q11.	How do you define the February Event?
7	A11.	My colleague Ron Nelson and I use the same definition as the Commission
8		defined in its August 30, 2021 Order. ³ The February Event is defined as the 5-day
9		period between February 13 – 17, 2021.
10	Q12.	Did you prepare an Exhibit that details the timeline?
10 11	Q12. A12.	Did you prepare an Exhibit that details the timeline? Yes. Please see Exhibit(BC-D), Schedule 2. This exhibit details the timeline
	-	
11	-	Yes. Please see Exhibit (BC-D), Schedule 2. This exhibit details the timeline
11 12	-	Yes. Please see Exhibit(BC-D), Schedule 2. This exhibit details the timeline of events specifically relating to weather forecasts, weather conditions, pipeline
11 12 13	-	Yes. Please see Exhibit(BC-D), Schedule 2. This exhibit details the timeline of events specifically relating to weather forecasts, weather conditions, pipeline notices, and natural gas spot prices. Additionally, this includes a timeline of what
11 12 13 14	-	Yes. Please see Exhibit(BC-D), Schedule 2. This exhibit details the timeline of events specifically relating to weather forecasts, weather conditions, pipeline notices, and natural gas spot prices. Additionally, this includes a timeline of what each utility claimed to know and what actions they took as a result. Unless
11 12 13 14 15	-	Yes. Please see Exhibit(BC-D), Schedule 2. This exhibit details the timeline of events specifically relating to weather forecasts, weather conditions, pipeline notices, and natural gas spot prices. Additionally, this includes a timeline of what each utility claimed to know and what actions they took as a result. Unless otherwise indicated, all dates included in the timeline and in this testimony

³ Order Granting Variances and Authorizing Modified Cost Recovery Subject to Prudence Review, and Notice of and Order for Hearing, MPUC Docket No. G-999/CI-21-135, p.11 (August 30, 2021).

1	A13.	On January 28, 2021, the Commodity Weather Group (CWG) issued a 16 to 30-
2		day map, covering February 12-26, 2021, and forecasting colder than normal
3		temperatures in Minnesota but normal or above normal temperatures in the
4		southern and south-central United States. ⁴ At the end of January, the National
5		Weather Service issued a public forecast consistent with that of CWG. ⁵
6		By February 5, 2021, Minnesota started to experience unusually cold
7		temperatures, and the National Weather Service's February 5, 2021, 8- to 10-day
8		outlook forecasted the probability of a cold weather event affecting the entire
9		Midwest over the Presidents' Day weekend. ⁶ By Monday, February 8, predictions
10		emerged that southern producing states, such as Texas and Oklahoma, would also
11		experience extreme cold weather. ⁷
12	Q14.	Please describe the weather conditions leading up to the February Event.
12	Q14.	Trease describe the weather conditions leading up to the rebraary Event.
13	A14.	On Friday, February 5, Minnesota started to experience unusually cold
14		temperatures. The ten consecutive days following February 5, until February 15,
15		had highs at or below 10F. Ten consecutive days of highs at or below 10F had not
16		occurred since 1999. ⁸ Additionally, from February 12-15, 2021, the temperatures

⁵ Direct Testimony and Schedules of Richard G. Smead on Behalf of Joint Gas Utilities, MPUC Docket No. G002/CI-021-610, MPUC Docket No. G004/M-21-235, MPUC Docket No. G008/CI-21-138, MPUC Docket No. G011/CI-21-611, OAH Docket No. 71-2500-37763, p. 42, linse 1-3 (Oct. 22, 2021) ("Smead Direct")
⁶ Direct Testimony and Schedules of Jeffrey T. Toys on Behalf of CenterPoint Energy, MPUC Docket No. G008/CI-021-138/OAH Docket No. 71-2500-37763, p. 25, line 15-17 (Oct. 22, 2021) ("Toys Direct")

⁴ Direct Testimony and Schedules of Michael L. Boughner on Behalf of Northern States Power Company, MPUC Docket No. G002/CI-021-610, OAH Docket No. 71-2500-37763, p. 8, lines 13-14 (Oct. 22, 2021) ("Boughner Direct")

⁷ Smead Direct, p.42, lines 4-6.

⁸ Direct Testimony and Schedules of Allen D. Krug on Behalf of Northern States Power Company, MPUC Docket No. G002/CI-021-610, OAH Docket No. 71-2500-37763, p. 13, line 1-2 (Oct. 22, 2021) ("Krug Direct")

in the Twin Cities stayed below zero for four consecutive days, which had not
 occurred since 1994.⁹

Q15. When did the pipeline operators begin indicating that their systems were stressed?

5	A15.	On February 4, NNG first called a system overrun limitation (SOL) and continued
6		to call SOLs daily through February 17. ¹⁰ An SOL-day is called if the operating
7		integrity of the pipeline system is in jeopardy, which means shippers could incur a
8		higher variance charge if they take more gas than what they have scheduled. ¹¹
9		On February 11 at 11:46 p.m., NiGas issued a critical day notice for February 13
10		beginning at 9 a.m., which was anticipated to continue through February 15. ¹² On
11		February 12 at 10:10 a.m., NNG posted a critical day notice effective at 9 a.m. on
12		February 13 through 8:59 a.m. on February 14. NNG also posted critical day
13		notices each morning from February 13 - 19. ¹³ A Critical Day is called when the
14		operating condition of the pipeline system has severely deteriorated, and the
15		integrity of the system is threatened. ¹⁴

16 Q16. What is the significance of these pipeline operational alerts?

¹¹ Northern Natural Gas, NNG Flowing Gas and Invoicing User Manual, p.35 (January 2021),

https://www.northernnaturalgas.com/Document%20Postings/Flow_GAS_and_Invoicing_Manual.pdf ¹² Smead Direct, Schedule 6, p. 1-6.

⁹ Krug Direct, p.13, lines 2-4.

¹⁰ Direct Testimony and Schedules of Sarah R. Mead on Behalf of Minnesota Energy Resources Corporation, MPUC Docket No. G011/CI-021-611, OAH Docket No. 71-2500-37763, p. 44, lines 9-10 (Oct. 22, 2021) ("Mead Direct")

¹³ Smead Direct, Schedule 6, p. 1-6.

¹⁴ Mead Direct, p.51, line 9-10.

1	A16.	Minnesota natural gas utilities depend on the pipelines for transporting nearly all
2		of their gas, both market purchases and storage. Declarations of critical days or
3		SOLs indicate tightened flow tolerances and means that the pipeline may limit the
4		ability of the utility to deliver its scheduled volume. Under these types of
5		designations, the risk of penalties increases and the importance of the utility's
6		load forecast during the designated period also increases. NNG's SOL was called
7		just over a week before the onset of the February event giving the utilities time to
8		plan for adequate balancing services prior to the long weekend. In addition to the
9		weather reports, the SOL and critical day notifications are another indication that
10		the weekend market conditions were deteriorating.
11	Q17.	Were there any other notable events in the lead up to the February Event
12	tha	at may have indicated the possibility of supply shortages?
13	A17.	Yes. On February 8, Platts Gas Daily reported that [BEGIN TRADE SECRET
14		INFORMATION] [END TRADE SECRET INFORMATION]. ¹⁵
15		Additionally, on February 10 and 11, potential production freeze-offs were being
16		reported by the trade press. ¹⁶ For example, the February 11 edition of Gas Daily
16 17		reported by the trade press. ¹⁶ For example, the February 11 edition of Gas Daily published on February 10 noted: "The potential for increased local demand and

 ¹⁵ CenterPoint Energy, Trade Secret Response to CUB IR#2, (Attached as Exhibit___(BC-D), Schedule 3), MPUC Docket No. G999/CI-21-135.
 ¹⁶ Xcel Energy, Public Response to DOC IR#36 (Attached as Exhibit___(BC-D), Schedule 4), MPUC Docket No.

G002/CI-21-610, OAH Docket No. 71-2500-37763.

1	National Weather Service forecasting a low of 28 degrees Fahrenheit at Midland,
2	Texas on Feb. 11. Further lows are expected through the weekend, with
3	temperatures expected to fall as low as 15 F on Feb. 13, which could prompt
4	wellhead freeze-offs." ¹⁷ Likewise, the February 12 edition of Gas Daily published
5	on February 11 noted: "The Midcontinent led the surge in US gas prices in Feb.
6	11 trading as a sharp rise in heating demand met with regional production freeze-
7	offs, significantly tightening balances across much of the Central US. In morning
8	trading, cash prices at hubs in Kansas, Oklahoma and eastern Arkansas hit levels
9	not seen since 2014, with select locations hitting record highs, Intercontinental
10	Exchange data showed. At One Oak Gas Transmission, Southern Star and Enable
11	Gas, spot prices reached record highs around \$85, \$45, and \$30/MMBtu,
12	respectively. At other hubs, including ANR Oklahoma, Panhandle and NGPL
13	Midcontinent, prices hit their highest in seven years, topping \$16, \$14, and
14	\$12/MMBtu, respectively." ¹⁸
15	CenterPoint, MERC, and Xcel have indicated that they review Platts Gas Daily-
16	MERC notes prices reported from Gas Daily in Information Requests, ¹⁹
17	CenterPoint refers to Platts Gas Daily Prices in Information Requests ²⁰ and Platts
18	Gas Daily news updates were in the email inboxes of key Xcel employees on the

¹⁷ *Ibid*.

¹⁸ *Ibid*.

¹⁹ MERC, Trade Secret Response to CUB IR#21, MPUC Docket No. G011/CI-21-611, OAH Docket No. 71-2500-37763

⁽Attached as Exhibit____(BC-D), Schedule 5). ²⁰ CenterPoint Energy, HCTS Response to OAG IR#5, p. 325, MPUC Docket No. G-999/CI-21-135 (Attached as Exhibit___(BC-D), Schedule 6).

mornings of February 11 and 12^{21} - and thus should have been aware of this 1 information. 2

3	Q18.	Please describe natural gas spot prices leading up to the February Event.
4	A18.	There are three key trading hubs that are directly relevant to the Minnesota
5		market: Emerson, Manitoba (Emerson), where TransCanada feeds both Great
6		Lakes and Viking; NNG Field/Market Demarcation (Demarc), the Kansas
7		boundary between NNG's supply-area system and the market system that serves
8		Minnesota; and Ventura, Iowa (Ventura), where Northern Border and NNG
9		boundary between NNG's supply-area system and the market system that
10		intersect.
11		The 5-year annual average gas price is \$2.433/MMBtu for delivery into Emerson,
12		\$2.468/MMBtu for Demarc, and \$2.543/MMBtu Ventura. ²² On January 27,
13		natural gas spot prices settled at \$2.506/MMBtu for delivery into Emerson,
14		\$2.651/MMBtu for Demarc, and \$2.639/MMBtu Ventura. ²³ This was the last day
15		of spot prices published before the final day for monthly spot market purchases,
16		January 28. First of the month (FOM) contract purchases settled slightly above
17		the spot price.
18		Spot market prices began to noticeably rise by Wednesday, February 10 for gas
19		delivered on February 11. At the end of February 10, spot market prices settled at

 ²¹ Xcel Energy, HCTS Response to OAG IR#5, MPUC Docket No. G002/CI-21-610, OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 7).
 ²² Analysis based on S&P Capital IQ Pro data.

²³ S&P Capital IQ Pro Historical Spot Natural Gas Index.

1		\$4.733/MMBtu at Emerson, \$6.900/MMBtu at Ventura, and \$7.245 at Demarc. ²⁴
2		These February 10 prices represent a 95 percent (Emerson), 171 percent (Ventura)
3		and 194 percent (Demarc) increase over 5-year annual average prices,
4		respectively.
5		By the end of February 11, spot prices had more than doubled from the previous
6		day at both Demarc and Ventura settling at \$14.109/MMBtu and
7		\$15.613/MMBtu, respectively. Prices at Emerson were just under 1.5 times the
8		spot price of the previous day settling at \$6.5/MMbtu. ²⁵ These February 11 prices
9		represent a 472 percent (Demarc), 514 percent (Ventura), and 167 percent
10		(Emerson) increase over 5-year annual average prices.
11	Q19.	Will you please put the prices on February 11, as the utilities were preparing
	-	Will you please put the prices on February 11, as the utilities were preparing purchase gas for the four-day period of February 13-16, into historical
11	to	
11 12	to	purchase gas for the four-day period of February 13-16, into historical
11 12 13	to j per	purchase gas for the four-day period of February 13-16, into historical rspective?
11 12 13 14	to j per	purchase gas for the four-day period of February 13-16, into historical rspective? In the past 10 years in Minnesota, natural gas spot prices had only exceeded
11 12 13 14 15	to j per	purchase gas for the four-day period of February 13-16, into historical rspective? In the past 10 years in Minnesota, natural gas spot prices had only exceeded \$14/MMBtu during the 2013/2014 Polar Vortex, the TransCanada Pipeline
11 12 13 14 15 16	to j per	purchase gas for the four-day period of February 13-16, into historical rspective? In the past 10 years in Minnesota, natural gas spot prices had only exceeded \$14/MMBtu during the 2013/2014 Polar Vortex, the TransCanada Pipeline Explosion in 2014, and the extreme cold of New Year's 2017/2018. ²⁶ Prior to

²⁴ Ibid.
²⁵ Ibid.
²⁶ Ibid.

1	Q20.	How do the natural gas spot prices in the lead up to the February Event
2	CO	mpare to historical averages?
3	A20.	The spot market prices on February 10 and 11 were in the 98th percentile at
4		Emerson, Demarc, and Ventura, as compared to the past 5 years of natural gas
5		spot prices at each respective trading hub. ²⁷ The unusually high prices prior to the
6		worst of the storm tightened pipeline supply conditions, and a four-day gas
7		buying period should have strongly indicated to the utilities that price volatility
8		would likely continue.

9 Table 4: Natural gas spot prices (\$/MMBtu) in the lead up to the February Event as compared to
 10 5-year averages²⁸

Trade Date	Flow Date	Emerson	Demarc	Ventura
		(\$/MMBtu)	(\$/MMBtu)	(\$/MMBtu)
2/8/2021	2/9/2021	3.359	3.800	4.052
2/9/2021	2/10/2021	3.158	3.881	4.056
2/10/2021	2/11/2021	4.733	6.900	7.245
2/11/2021	2/12/2021	6.500	14.109	15.613
5-Year Historio	c Average	2.433	2.468	2.543

- 12
- Q21. Can the utilities be reasonably expected to have knowledge of the weather,
- 13

pricing, and market conditions that you just described?

²⁷ Analysis based on S&P Capital IQ Pro data.

²⁸ S&P Capital IQ Pro Historical Spot Natural Gas Index.

1	A21.	Yes, the utilities can all be reasonably expected to have knowledge of all the
2		information that I discussed in this subsection. The weather forecasts are publicly
3		available, the NNG and NiGas critical day and SOL notices are publicly available
4		on their websites, and the utilities frequently communicate with gas suppliers and
5		have indicated that they refer to Platt's Gas Daily, so they are aware of forecasted
6		price points.
7		Going into the long weekend, market prices were already higher than alternative,
8		available resources, such as storage, curtailing interruptible customers, and
9		peaking facilities, and there was no logical scenario where the utilities could have
10		predicted that prices would have decreased over the weekend.
		b. Conditions During the February Event
		b. Conditions During the February Event
11	Q22.	b. Conditions During the February Event Please describe the weather conditions during the February Event.
11 12	Q22. A22.	
	-	Please describe the weather conditions during the February Event.
12	-	Please describe the weather conditions during the February Event. From February 12-15, the temperatures in the Twin Cities stayed below zero for
12 13	-	Please describe the weather conditions during the February Event. From February 12-15, the temperatures in the Twin Cities stayed below zero for four consecutive days, which had not occurred since 1994. ²⁹ February 14 was the
12 13 14 15	A22.	Please describe the weather conditions during the February Event. From February 12-15, the temperatures in the Twin Cities stayed below zero for four consecutive days, which had not occurred since 1994. ²⁹ February 14 was the coldest day of the long weekend. Temperatures stayed below 10F during the entirety of the February Event.
12 13 14 15 16	A22. Q23.	Please describe the weather conditions during the February Event. From February 12-15, the temperatures in the Twin Cities stayed below zero for four consecutive days, which had not occurred since 1994. ²⁹ February 14 was the coldest day of the long weekend. Temperatures stayed below 10F during the entirety of the February Event. Please describe the natural gas prices during the Event.
12 13 14 15 16 17	A22.	Please describe the weather conditions during the February Event. From February 12-15, the temperatures in the Twin Cities stayed below zero for four consecutive days, which had not occurred since 1994. ²⁹ February 14 was the coldest day of the long weekend. Temperatures stayed below 10F during the entirety of the February Event. Please describe the natural gas prices during the Event. During the February Event, natural gas spot prices reached unprecedented levels.
12 13 14 15 16	A22. Q23.	Please describe the weather conditions during the February Event. From February 12-15, the temperatures in the Twin Cities stayed below zero for four consecutive days, which had not occurred since 1994. ²⁹ February 14 was the coldest day of the long weekend. Temperatures stayed below 10F during the entirety of the February Event. Please describe the natural gas prices during the Event.

²⁹ Krug Direct, p.13, lines 2-4.

1		Emerson and Ventura these price spikes occurred on February 17. At Demarc, this
2		price spike occurred on February 16.30 These peak prices represent a 272 percent
3		(Emerson), 6,900 percent (Ventura) and 6,180 percent (Demarc) increase over 5-
4		year annual average prices.
5	Q24.	When did the utilities purchase daily spot gas for February 13-16?
6	A24.	Given the volume that CenterPoint needed to procure for the long weekend,
7		tightening of supply on February 10, and "hesitance of suppliers to sell at the Gas
8		Daily Index or at a fixed price due because of price movements on February 10
9		and where the market was estimating prices would settle for Gas Day February
10		11," CenterPoint purchased 195,000 of daily spot gas for delivery over the
11		holiday weekend on the morning of February 11.31 CenterPoint made additional
12		purchases on February 12.32 Xcel began purchasing gas for the long weekend at
13		6:40 a.m. on February 12.33 MERC purchased daily gas on February 11 between
14		1:45 p.m. and 2:25 p.m. ³⁴
15	Q25.	What was the price of daily spot natural gas on February 16 when the
16	util	ities purchased gas for February 17?
17	A25.	By Tuesday February 16, when the utilities were purchasing gas for Wednesday,

18

February 17, the utilities knew that prices over the four-day period were at

 ³⁰ S&P Capital IQ Pro Historical Spot Natural Gas Index.
 ³¹ Toys Direct, p.31, lines 8-14.

³² Toys Direct, p.37, lines 14-16.

³³ Direct Testimony and Schedules of Gordon H. Green on Behalf of Northern States Power Company, MPUC Docket No. G002/CI-021-610, OAH Docket No. 71-2500-37763, p. 13, lines 17-19 (Oct. 22, 2021) ("Green Direct") ³⁴ Mead Direct, p.46, lines 21-22.

1		unprecedented levels. Prices settled at \$133.64/Dth and \$188.32/Dth at Demarc
2		and Ventura, respectively, on February 16. When the utilities purchased gas on
3		February 16 for February 17, the utilities cannot say that they did not know prices
4		would reach unprecedented levels as they just experienced four days of
5		unprecedented prices.
6	Q26.	Has Minnesota ever experienced natural gas price spikes associated with
7	ext	reme cold weather events?
8	A26.	Yes. In the past 10 years in Minnesota, prices have spiked due to the 2013/2014
9		Polar Vortex, the TransCanada Pipeline Explosion, the extreme cold of New
10		Year's 2017/2018, and the 2019 Polar Vortex. Price spikes as a result of the 2019
11		Polar Vortex were less extreme than the other aforementioned events, but prices
12		at Emerson, Demarc, and Ventura still reached at least double the 5-year average
13		price. The utilities have repeated experience navigating extreme cold weather
14		events accompanied by price spikes.
		c. Utility Knowledge and Associated Actions
15	Q27.	Let's take each company in turn. Please start with CenterPoint. Will you
16	plea	ase describe what knowledge CenterPoint claimed to have in the lead up to
17	and	l during the Event?
18	A27.	CenterPoint uses a two-day forecast to inform gas purchasing decisions, but on
19		weekends and/or holidays, which require a longer forecast period, 5-day forecast

1	weather data is used. ³⁵ CenterPoint reviews 2-5 day weather data at its Daily
2	Supply Plan review meeting daily at 7AM. CenterPoint also reviews 10-day
3	weather data from a Company-developed model to monitor longer-range forecasts
4	and identify potential weather patterns. ³⁶ Witness Toys testified that entering the
5	month of February, forecasts began to suggest that the month would be a few
6	degrees colder than normal. Witness Toys also refers to the National Weather
7	Service's February 5, 8- to 10-day weather forecast showing the probability of a
8	cold weather event affecting the entire Midwest over the Presidents' Day
9	weekend. ³⁷
10	Witness Toys testified that on February 11, CenterPoint was seeing tightening of
11	supply in the market for daily gas and "there were indications on February 11th
12	that the market might rise even higher on February 12th." ³⁸ Further, on the
13	morning of February 11, some suppliers indicated to CenterPoint that they would
14	not sell to the Company so as to not end up short for the long weekend and
15	CenterPoint expressed concern about securing enough gas for the long weekend. ³⁹
16	In an exchange with a supplier, a CenterPoint representative asked "how are
17	prices this morning" and after a response from the third party responded with
18	"it[']s scary." ⁴⁰

³⁵ Direct Testimony and Schedules of Dr. Adam J. Stepanek on Behalf of CenterPoint Energy, MPUC Docket No. G008/CI-021-138, OAH Docket No. 71-2500-37763, p. 6, lines 8-15 (Oct. 22, 2021) ("Stepanek Direct") ³⁶ Stepanek Direct, p.6, lines 8-22.

 ³⁷ Toys Direct, p.25, lines 15-17.
 ³⁸ Toys Direct, p.32, lines 8-10.
 ³⁹ Toys Direct, p.32, lines 1-3.

⁴⁰ Office of the Attorney General, Docket No. G-999/CI-21-135/21-138/21-235, p. 46 (July 6, 2021).

1	Q28.	Are CenterPoint's claims consistent with what the Company reasonably
2	sho	ould have known in the lead up to the February Event?
3	A28.	Yes except for one notable omission. Witness Toys is focused on what the
4		Company knew prior to the four-day gas buying period for February 13-16.
5		CenterPoint does not address what it knew on February 16 for gas day February
6		17, notably that its service territory was experiencing an unprecedented price
7		spike. CenterPoint failed to address this, and it appears that it did not adjust its
8		actions based on that unmistakable knowledge.
9	Q29.	What decisions did CenterPoint make based on this knowledge?
10	A29.	CenterPoint reported that it updated its load forecast developed 2-5 days prior to
11		each day and reviewed weather data at its Daily Supply Plan review meeting at 7
12		a.m. ⁴¹
13	•	• On February 11 at 9 a.m., CenterPoint purchased 195,000 Dth of daily spot gas
14		for delivery over the long weekend. ⁴²
15	•	• At its Daily Supply Plan meeting on February 12 at 7 a.m., CenterPoint updated
16		its weather forecasts up to February 16, discussed the possibility of curtailing
17		customers, and planned to maximize gas storage on February 14, as this was the

 ⁴¹ Olsen Direct p.8, lines 5-7; Olsen Direct p.12, lines 12-13.
 ⁴² Toys Direct, p.31, lines 10-12.

1	highest projected load day. ⁴³ Also on February 12, CenterPoint purchased
2	540,000 Dth of daily swing supplies. ⁴⁴
3 •	On February 13, CenterPoint maximized storage withdrawals, and dispatched
4	229 Dth of LNG and 1,397 Dth of propane for peak shaving. At the end of the
5	day, the Company decided to dispatch propane from Rum River at 7 a.m. 45
6 •	On February 14, CenterPoint curtailed 31 customers beginning at 5AM, Rum
7	River was dispatched from 7 a.m11 a.m., and CenterPoint's LNG resources
8	ran at 50 percent for the rest of the gas day. ⁴⁶ Storage withdrawals were once
9	again maximized. ⁴⁷
10 •	On February 15 CenterPoint again maximized storage withdrawals and ran its
11	LNG peaking facilities at 50 percent. ⁴⁸
12 •	On February 16, storage withdrawals were reduced, and customers were
13	released from curtailment despite continuous price increases and no indications
14	of changing supply conditions. ⁴⁹
15 •	On February 17, CenterPoint nominated its full baseload (358,436 Dth) and
16	swing supply (70,000 Dth), nominated its daily maximum storage capacity, and
17	purchased a reduced amount of daily spot gas. ⁵⁰

⁴³ Olsen Direct p. 22-23, lines 6-17 and 1-18; Direct Testimony and Schedules of John J. Reed on Behalf of CenterPoint Energy, MPUC Docket No. G008/CI-021-138, OAH Docket No. 71-2500-37763, p. 78, lines 12-13 (Oct. 22, 2021) ("Reed Direct") ⁴⁴ Reed Direct, p.79, lines 10-11.

⁴⁸ Toys Direct, p.51, lines 14-19. ⁴⁹ Toys Direct, p.55, lines 4-9.

⁴⁵ Direct Testimony and Schedules of John W. Heer on Behalf of CenterPoint Energy, MPUC Docket No. G008/CI-021-138, OAH Docket No. 71-2500-37763, p. 35-36, lines 12-13 and 1-2 (Oct. 22, 2021) ("Heer Direct") ⁴⁶ Heer Direct, p.36, lines 11-13; Toys Direct, p.47, lines 13-15.

⁴⁷ Toys Direct, p.47, lines 7-9.

⁵⁰ Toys p.55, lines 13-14.

1	Q30.	Will you please describe what knowledge MERC claimed to have in the lead
2	up	to and during the February Event?
3	A30.	MERC claimed that it was aware of a cold weather forecast for Minnesota on
4		February 2 and aware of a cold weather forecast for other US states "several days
5		later."51 Regarding pricing, Witness Eidukas claims that MERC became aware of
6		the price spike late on the morning of February 12.52
7	Q31.	Are MERC's claims consistent with what the Company reasonably should
8	ha	ve known in the lead up to the February Event and during the Event?
9	A31.	Not all of MERC's claims are consistent with what the Company reasonably
10		should have known in the lead up to the February Event. MERC's knowledge of
11		weather prior to the February Event is consistent with what the company could
12		have been reasonably expected to know, but Witness Eidukas' claim that MERC
13		only became aware of price spikes the morning of February 12 is unreasonable.
14		As discussed earlier in my testimony, both the February 10 and 11 spot market
15		prices were in the 98 th percentile at Emerson, Demarc, and Ventura, as compared
16		to the past 5 years of natural gas spot prices at each respective trading hub. The
17		spot prices seen in the lead up to the Event were significantly higher than average
18		natural gas spot prices in Minnesota, which should have caught the attention of all

⁵¹ Direct Testimony and Schedules of Theodore T. Eidukas on Behalf of Minnesota Energy Resources Corporation, MPUC Docket No. G011/CI-021-611, OAH Docket No. 71-2500-37763, p. 24, line 14-17 (Oct. 22, 2021) ("Eidukas Direct").

⁵² Eidukas Direct, p.26, lines 6-10.

1		the utilities especially considering awareness of tightened supply conditions and
2		deliverability concerns due to the pipeline warnings.
3		Further, by Tuesday, February 16, extreme prices were well known, but MERC
4		failed to acknowledge this available information and did not adjust its actions to
5		benefit customers.
6	Q32.	What decisions did MERC make based on this knowledge?
7	A32.	MERC began planning for the long weekend in the afternoon of February 11.53
8	•	• On February 11 between 1:45 p.m. and 2:25 p.m., MERC purchased daily gas
9		for the long weekend. ⁵⁴
10	•	• On February 14 at 7 a.m., MERC significantly reduced its forecast of gas load
11		from 456,675 Dth to 379,990 Dth and reduced transport volumes from 187,765
12		Dth to 137,765 Dth. ⁵⁵ MERC also reduced storage withdrawals by 33,675 Dth. ⁵⁶
13	•	• On February 15, MERC began planning for the purchasing gas for February
14		17. ⁵⁷
15	•	• On February 16 at 7:30 a.m., MERC purchased gas for February 17. ⁵⁸
16	•	• On February 17 at 7 a.m., MERC reduced its forecast of gas load from 391,379
17		Dth to 318,603 Dth and increased transport customers' estimated volumes by a
18		few hundred Dth. ⁵⁹

⁵³ Mead Direct, p.46, line 19.
⁵⁴ Mead Direct, p.46, lines 20-22.
⁵⁵ Mead Direct, p.48, lines 6-9.
⁵⁶ Mead Direct, p.48, lines 9-10.
⁵⁷ Mead Direct, p.48, lines 16-17.
⁵⁸ Mead Direct, p.48, lines 17-22.
⁵⁹ Mead Direct, p.50, lines 1-3.

Q33. Should MERC have begun planning for the long weekend prior to February 11?

3	A33.	Yes. As a result of the 2019 Polar Vortex, MERC "proposed that when severe
4		cold weather is forecasted, the Company would establish a meeting schedule with
5		key employees from operations, engineering, and gas supply to provide updates
6		and to regularly monitor and respond to any service-related issues."60 MERC
7		continued on to say that, "In the last severe cold weather event, MERC began a
8		meeting schedule after the event had begun. MERC believes being proactive will
9		allow MERC personnel to be better prepared." ⁶¹ As a result of the 2019 Polar
10		Vortex, MERC recognized the need to proactively plan, but did not apply this
11		lesson learned during the February Event. Forecasts indicating severe cold
12		weather were publicly available by February 5, so MERC should have begun its
13		planning process then. The company provided no evidence that it began acting
14		sooner than February 11.

Q34. Lastly, will you please describe what knowledge Xcel claimed to have in the lead up to the February Event?

17 A34. Xcel's January 28 weather map for February 12-16 projected colder than normal 18 temperatures in Minnesota, but normal or above normal temperatures in the 19 southern and south-central United States.⁶² Xcel's February 2 weather map

⁶⁰ Compliance Filing of Minnesota Energy Resources Corporation, MPUC Docket No. E,G-999/CI-19-160, p.1 (November 1, 2019).

⁶¹ *Ibid*.

⁶² Boughner Direct, p.7, lines 22-25.

1		forecast colder than average weather for the southern and south-central states. The
2		Company's February 8 weather map illustrated extreme cold across the United
3		States. ⁶³ On February 11, Xcel's gas traders noted price increases in the market. ⁶⁴
4	Q35.	Are Xcel's claims consistent with what the Company reasonably should have
5	kno	own in the lead up to the Event?
6	A35.	Not all of Xcel's claims are consistent with what the Company reasonably should
7		have known in the lead up to the February Event. Xcel's knowledge of weather
8		prior to the February Event is consistent with what the Company could have been
9		reasonably expected to know, but Xcel repeatedly claims a lack of knowledge of
10		the extreme prices. While it is true that the utility could not have reasonably
11		foreseen the extent of the price spikes, prices were already spiking on February 10
12		and 11, and price spikes should have been expected to continue as experienced in
13		all of Minnesota's extreme cold weather events in the past 10 years. Additionally,
14		by Tuesday, February 16, extreme prices were well known, but Xcel did not take
15		all reasonable actions that it could have taken to benefit customers.
16	Q36.	Prior to the February Event, were there any important dates that are
17	rel	evant and should have informed Xcel's decision-making during the Event?
18	A36.	Yes. As will be discussed in greater detail later in my testimony, during
19		vaporization testing on the Wescott plan on December 31 st , 2020, there was a

malfunction on vaporization equipment and natural gas was released into the

⁶³ Boughner Direct p.11, lines 6-7.
⁶⁴ Krug Direct, p.25, lines 18-19.

1		atmosphere. The same occurrence happened during a January 3, 2021, test as
2		well. After investigating into two propane facilities, Xcel also shut down its
3		Sibley and Maplewood plants, and the Wescott LNG facility. All three of the
4		utility's peaking facilities would remain offline through the winter season and into
5		today. The Company procured additional firm pipeline capacity to ensure it had
6		sufficient capacity for the season.
7	Q37.	What decisions did Xcel make based on the information it was receiving the
8	we	ek prior to the Event?
9	A37.	Xcel made the following decisions based on the information it was receiving the
10		week prior to the Event:
11		• On February 4, Xcel released an internal extreme cold weather alert and
12		began planning for the upcoming extreme cold weather. Additionally, on
13		February 4, Xcel initiated discussions with all gas teams, increased staffing
14		to monitor the gas system, opened redundant supply paths, made
15		compressed natural gas mobile units available, planned to maximize storage
16		withdrawals, and encouraged conservation efforts. ⁶⁵
17		• On February 5, Xcel curtailed all of its interruptible firm and transport
18		customers. These curtailments continued until February 18 for firm
19		customers and February 22 for transportation customers. ⁶⁶
20		• On February 10, Xcel purchased 354,912 Dth for \$6.04/Dth. ⁶⁷

⁶⁵ Krug Direct, p. 20-21, lines 10-4.
⁶⁶ Krug Direct, p.21, lines 7-18.
⁶⁷ Green Direct, p.12, lines 14-15.

was

1		• On February 11, Xcel purchased 354,825 Dth for \$13.6/Dth. ⁶⁸
2		• On February 12 at 11 a.m., Xcel again curtailed interruptible gas
3		customers. ⁶⁹
4		• On February 13, Xcel purchased 14,000 Dth at \$95/Dth. ⁷⁰
5		• On February 15, Xcel purchased 8,280 Dth at \$157/Dth. ⁷¹
6		• On February 16, Xcel purchased 272,953 Dth at \$127.19/Dth. ⁷²
7		• On February 17 at 6 p.m., most gas customers were released from
8		curtailment. ⁷³
9		• On February 18 at 9 a.m., the remainder of Xcel's interruptible gas
10		customers were released from curtailment. ⁷⁴
		IV. Load Forecasting and Supply Planning
11	Q38.	What is the purpose of this section of your testimony?
12	A38.	The purpose of the section is to analyze whether the utilities load forecasting
13		prudent and informed prudent decision making before, during, and after the
14		Event.
15	Q39.	Why are load forecast important and how do they relate to supply

16

procurement for customers?

⁶⁸ Green Direct, p.12, lines 19-20.
⁶⁹ Krug Direct, p.21, lines 11-13.
⁷⁰ Green Direct, p.19, lines 23-24.
⁷¹ Green Direct, p.20, lines 26-27.
⁷² Green Direct, p.19, lines 10-11.
⁷³ Krug Direct, p.21, lines 13-15.

⁷⁴ *Ibid*.

1	A39.	Load forecasting is important because it is the basis for understanding how much
2		supply is necessary to meet the forecasted load. From there, the Company can
3		determine the optimal strategy for delivering supply to load that maintains
4		reliability at the lowest reasonable cost. Forecasting errors, to some degree, are
5		inevitable and expected, and the utilities have options to balance the system
6		within the day. However, unreasonable forecasting errors can be enormously
7		expensive and at worst, cause a reliability issue.
8	Q40.	In regard to their load forecasts, what did the utilities include in their
9	tes	timonies? What did they not include?
10	A40.	By and large, the utilities provided timelines of their load forecasts and
11		subsequent supply decisions, but they did not provide analysis or explanation as
12		to the reasonableness of their load forecasts. Questions that I would have expected
13		the utilities to answer include, but are not limited to: What was the load
14		forecasting error for each day during the Event? What is an acceptable level of
15		load forecasting error? Is there any industry benchmark? Does the utility modify
16		its methodology or approach when it is forecasting for a long weekend or for an
17		extreme cold weather event, or if the pipelines have issued an operational flow
18		order or other critical designation?
19	Q41.	Did the utilities face any constraints in planning to meet load prior to or
20	du	ring the event?
21	A41.	Yes. As detailed in the timeline I developed, attached as Exhibit(BC-D),
22		Schedule 2, the worst of the storm was predicted to occur over President's Day

1		weekend. Due to the holiday and the structure of the natural gas market, the
2		utilities would need to plan how they would meet expected demand for February
3		13-16 on Friday, February 12, the last day for purchasing gas on the market. The
4		daily spot purchases and call options over the long weekend (February 13-16,
5		2021) must be "ratable," meaning that each day must be equivalent in volume. To
6		ensure sufficient daily supply, the utilities focused their planning on meeting load
7		on February 14, which was forecast to have the coldest temperature and highest
8		load over the four-day weekend. Although suppliers occasionally offer non-
9		ratable spot purchases at a premium, CenterPoint and MERC reported that they
10		did not receive any offers for non-ratable gas over the long weekend. ⁷⁵
11		In addition, NNG issued a System Overrun Limitation (SOL) on February 4 th
12		lasting through the remainder of the Event. During a SOL, the pipeline restricts
13		the utility's ability to use the pipeline's balancing service (called System
14		Management Service) and also applies stiff penalties to the utility if it pulls more
15		or less gas than it scheduled. ⁷⁶
16	Q42.	How have the utilities argued that these constraints limited their ability to
17	mi	nimize costs during the event?

18 A42. Each utility has argued that the requirement to purchase ratable gas over the long
19 weekend essentially forced them to over-procure daily spot purchases, and in the

⁷⁵ CenterPoint Energy, Public Response to CUB IR # 35a, MPUC Docket No. G-008/M-21-138/OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 9).; Minnesota Energy Resources Corporation, Public Response to CUB IR #33a, MPUC Docket No. 21-611/ OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 10).

⁷⁶ CenterPoint Energy, HCTS Response to CUB IR #39, MPUC Docket No. G-008/M-21-138/OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 11).

1		case of CenterPoint and MERC, call options, during the three days in which load
2		was not expected to peak. To ensure adequate supply on the peak date of February
3		14, while also meeting the requirement for ratable spot purchases, the utilities
4		were left with no choice, in their account, but to purchase excess gas during the
5		non-peak dates while ramping down storage in order to balance the system and
6		avoid paying steep penalties for excess supply. ⁷⁷
7	Q43.	Do you agree with this conclusion reached by each utility?
8	A43.	Partially, but I also disagree with some aspects of these conclusions. The
9		requirement for ratable gas purchases over the long weekend undoubtedly
10		presented a constraint: the utilities must balance the need to provide reliable
11		supply on February 14 against the obligation to minimize the cost of over-
12		procurement of daily spot and swing purchases on the three days expected to have
13		non-peak load. Given the essential need to ensure reliability and the state of the
14		natural gas market, it is reasonable for the utility to plan for the peak day and to
15		anticipate some level of over-procurement of daily spot and swing gas during the
16		non-peak days.
17		However, I disagree with aspects of the utilities' conclusions for two reasons.
18		First, the scale by which Xcel and MERC over-forecasted their customers'
19		demand was unreasonably conservative, as I will discuss in greater detail shortly.
20		Second, Xcel and MERC appear to be emphasizing the requirement for ratable

⁷⁷ Toys Direct, p.39, lines 12-19, p. 40, lines 1-5, p. 44, lines 9-17, p. 56, lines 11–13, p. 57, lines 1-4, p. 63, lines 14-15; Mead Direct, p. 57, lines 7-17; Green Direct, p. 8, lines 4-8; Levine Direct, Schedule 2, Review of NSPM's Natural Gas Procurement for Retail Natural Gas Customers, spp. 42-43, paragraph 64.

21	for	recast prior to and during the event?
20	Q45.	Do you have concerns regarding the reasonableness of each utility's load
19		unprecedented heights.
18		(ii) the utilities knew the extent of the storm, and (iii) prices had already reached
17		weekend, as well as February 17, when (i) non-ratable purchases were available,
16		plan for February 14, the date when peak load was expected over the long
15		analysis instead assesses the reasonableness and impact of the utilities' efforts to
14		weekend, the utilities could not have reasonably addressed this constraint. My
13		reasonable option to purchase non-ratable gas immediately prior to the long
12		purchases over the long weekend. Given that they did not appear to have a
11	A44.	Yes. It would not be reasonable to penalize utilities solely for making ratable
10	rec	commended range for disallowances?
9	Q44.	Have the constraints faced by the utilities informed your analysis and
8		and non-firm customers over balancing costs and risk for all ratepayers.
7		testify, the utilities chose to prioritize minimizing risks to the utility, shareholders,
6		though ratable purchases were required. As my colleague Ron Nelson and I
5		and risk, they could have substantially reduced costs for their customers - even
4		volatile prices by planning supply in a manner that more reasonably balanced cost
3		unavoidable. Had MERC and Xcel produced better load forecasts and reacted to
2		unnecessary level of over-procurement of daily spot gas was inevitable and
1		purchases while downplaying their own role in managing costs to suggest that an
1	A45.	Yes. Although CenterPoint produced relatively accurate load forecasts, I am
----------------------------	---------------------	--
2		concerned about MERC and Xcel's load forecasting. MERC substantially over-
3		projected load for MERC NNG on February 14 and 17. Unfortunately, the utility
4		did not testify as to the reasonableness of its forecast. I am also concerned that
5		Xcel chose to base its supply plans on a forecast that included delivery to
6		interruptible customers. Given that Xcel interrupted a substantial amount of non-
7		firm load, the load forecast served as an inaccurate tool for informing supply
8		decisions. ⁷⁸ I am particularly concerned that MERC and Xcel's approaches were
9		the most conservative when planning for February 17, after daily spot prices had
10		reached unprecedented heights.
10 11	Q46.	Was CenterPoint's load forecast prior to and through the Event reasonable?
	Q46. A46.	
11	-	Was CenterPoint's load forecast prior to and through the Event reasonable?
11 12	-	Was CenterPoint's load forecast prior to and through the Event reasonable? CenterPoint appears to have forecasted load with a moderate to high degree of
11 12 13	-	Was CenterPoint's load forecast prior to and through the Event reasonable? CenterPoint appears to have forecasted load with a moderate to high degree of accuracy. In assessing the accuracy of each utility's forecasts, it is important to
11 12 13 14	-	Was CenterPoint's load forecast prior to and through the Event reasonable? CenterPoint appears to have forecasted load with a moderate to high degree of accuracy. In assessing the accuracy of each utility's forecasts, it is important to note that Xcel's and CenterPoint's forecasts included non-firm load while actuals
11 12 13 14 15	-	Was CenterPoint's load forecast prior to and through the Event reasonable? CenterPoint appears to have forecasted load with a moderate to high degree of accuracy. In assessing the accuracy of each utility's forecasts, it is important to note that Xcel's and CenterPoint's forecasts included non-firm load while actuals omitted interrupted customers – a fact shielded by the comparison of forecasts to

⁷⁸ Xcel Energy, Response to CUB IR #60a, MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763 (Attached as Exhibit____(BC-D), Schedule 13).

⁷⁹ CenterPoint Energy, Public Response to DOC IR #4a, MPUC Docket No. G-008/M-21-138/OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 14).; Xcel Energy, Public Response to CUB IR #60, MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 13).; CenterPoint Energy, HCTS Response to CUB IR #47, MPUC Docket No. G-008/M-21-138/OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 15).

1	percent and 3 percent of delivered load on February 14 and 17, respectively, as
2	indicated in my workpapers. ⁸⁰ The Company planned a relatively modest supply
3	margin of less than 2 percent on both dates. ⁸¹ Given the relative accuracy of
4	CenterPoint's forecast, I believe that it provides evidence that it was possible to
5	forecast load with a moderate to high degree of accuracy on the key dates of
6	February 14 and 17.
7	I am concerned, however, that CenterPoint chose not to maximize curtailments
8	throughout the Event. ⁸² I will discuss this issue in greater detail later in my
9	testimony.

10 Table 5: CenterPoint Load Forecast During the Event

	Formula	2/14/2021	2/17/2021
A. Load Forecast as of Supply Meeting ⁸³		1,223,099	959,549
B. Estimated Interrupted Load ⁸⁴		(57,000)	(4,400)
C. Estimated Forecast for Non-			
Interrupted Load	A - B	1,166,099	955,149
D. Actual Load ⁸⁵		1,228,842	979,923
E. Forecast Error	(C-D)/D	-5.11%	-2.53%

⁸⁰ CenterPoint Energy, Public Response to OAG IR # 118d (Attached as Exhibit___(BC-D), Schedule 16), MPUC Docket No. G-999/CI-21-135; Toys Direct, p. 34, Table 9 and p. 57, line 18

⁸¹ Toys Direct, p. 34, Table 9; p. 55, lines 13-16; p. 57, line 18; p. 25, Table 25; CenterPoint Energy, HCTS Response to CUB IR #6 (Attached as Exhibit____(BC-D), Schedule 17).

⁸² CenterPoint Energy, Responses to OAG IR # 118a and 118d (Attached as Exhibit____(BC-D), Schedule 16), MPUC Docket No. G-999/CI-21-135.

⁸³ Toys Direct, p. 34, Table 9, p. 57, line 18.

⁸⁴ CenterPoint Energy, Public Response to OAG IR #118d (Attached as Exhibit___(BC-D), Schedule 16), MPUC Docket No. G-999/CI-21-135.

⁸⁵ CenterPoint Energy, Public Response to DOC #16f (Attached as Exhibit___(BC-D), Schedule 19), MPUC Docket No. G-999/CI-21-135

1	Q47.	Do you have concerns regarding the reasonableness of MERC's load forecast
2	pri	or to and during the event?
3	A47.	Yes. MERC appears to have produced relatively accurate load forecasts for
4		MERC Consolidated, yet MERC NNG's forecasts were quite inaccurate on the
5		critical dates of February 14 and 17. MERC's NNG area experienced
6		extraordinary prices during the Event, while MERC's Consolidated area did not
7		experience a similar price spike.
8		As explained in the testimonies of Witnesses Mead and Sexton, MERC NNG is
9		responsible for procuring gas for the Company's Sales customers, but also
10		distributes gas to Transportation customers who procure and deliver their own
11		supply on MERC's distribution system. MERC does not have direct insight into
12		the Company's Transportation customer contracts and must thus rely on
13		information from Transportation customers when forecasting load. ⁸⁶ I have
14		estimated actual load for MERC NNG's Sales customers by subtracting scheduled
15		Transportation from the combined load actuals for both Sales and Transportation
16		customers. As depicted in my workpapers, the estimated forecast error on
17		February 14 and 17 are 9.95 percent and 34.32 percent, respectively.

18 Table 6: MERC's Load Forecast During the Event

	Formula	2/14/2021	2/17/2021
A. Load Forecast for All Customers as of			
Supply Meeting ⁸⁷		456,675	391,379

⁸⁶ Mead Direct, p. 8, lines 13-17; Direct Testimony and Schedules of Timothy C. Sexton on Behalf of Minnesota Energy Resources Corporation, MPUC Docket No G011/CI-21-611/OAH Docket No. 71-2500-37763, (Oct. 22, 2021) ("Sexton Direct"), p. 25, lines 11-20.

⁸⁷ Mead Direct, Exhibit____(SRM-D), Schedule 7

B. Load Forecast for Transportation Customers as of Supply Meeting ⁸⁸		(187,789)	(138,405)
C. Load Forecast for Sales Customers as of Supply Meeting ⁸⁹		268,886	252,974
D. Actual Load for All Customers ⁹⁰		391,447	325,439
E. Scheduled Transportation ⁹¹		(146,905)	(137,100)
F. Estimated Load Actuals for Sales Customers	D-E	244,542	188,339
G. Forecast Error, All Customers	(A-D)/D	16.66%	20.26%
H. Estimated Forecast Error, Sales Customers	(C-F)/F	9.95%	34.32%

2	Unfortunately, we do not know why MERC's forecasting error was off, because
3	the Company did not sufficiently address this issue in its testimony. In response
4	to Information Requests, MERC has claimed that its substantial error on February
5	17 was due to the weather turning out warmer than expected. ⁹² However, because
6	MERC has claimed that the Company "does not generally retain historical records
7	of daily load forecasts used to make gas procurement decisions,"93 the Company
8	has not provided the transparency necessary to quantify whether the scale of its
9	forecasting miss was consistent with other days with imprecise weather forecasts.
10	MERC also claimed that the percentage impact of its forecasting miss on
11	February 17 was large because the Company over-projected a relatively small

⁸⁸ Ibid.

⁸⁹ Ibid.

⁹⁰ Minnesota Energy Resource Corporation, Response to DOC IR #55a (Attached as Exhibit___(BC-D), Schedule 20), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763

⁹¹ *Ibid*.

⁹² Minnesota Energy Resources Corporation, Public Response to DOC IR #52b (Attached as Exhibit___(BC-D), Schedule 21), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763; Minnesota Energy Resource Corporation, Response to DOC IR #55d (Attached as Exhibit___(BC-D), Schedule 20), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763

⁹³ Minnesota Energy Resources Corporation, Response to DOC IR #55d (Attached as Exhibit___(BC-D), Schedule 20), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763

1		amount of load. ⁹⁴ However, this merely describes rather than explains the scale of
2		MERC's forecasting miss on a date when the Company anticipated a relatively
3		small amount of load. MERC NNG did not plan to interrupt any load during the
4		Event, nor did the Company do so in practice. As stated previously, I am
5		particularly concerned that MERC's forecasting errors were largest on the key
6		planning date of February 17, and after prices had reached substantially escalated
7		levels.
8	Q48.	Do you have concerns regarding the reasonableness of Xcel's load forecast
9	pri	or to and during the event?
10	A48.	Yes. If we again subtract interrupted load estimates from load forecasts to create
11		an apples-to-apples comparison, Xcel's estimated load forecasts for non-
12		interrupted customers were within 2 percent of actual load on February 14, and 5
13		percent of actual load on February 17. However, Xcel chose to base its supply
14		plans on load forecasts that included interruptible customers, and which thus did
15		not accurately represent the load served by the Company.95 The Company
16		continued this approach of procuring duplicative supply for curtailed customers
17		even when planning for February 17, when it knew that prices were at

⁹⁴ Minnesota Energy Resources Corporation, Public Response to DOC IR #52b (Attached as Exhibit___(BC-D), Schedule 21), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763; Minnesota Energy Resource Corporation, Response to DOC IR #55d (Attached as Exhibit___(BC-D), Schedule 20), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763

⁹⁵ Xcel Energy, Response to CUB IR #60a (Attached as Exhibit___(BC-D), Schedule 13), MPUC Docket No. G002/CI-21-610/OAH Docket No. 71-2500-37763; Xcel Energy, Public Response to DOC IR#14 (Attached as Exhibit___(BC-D), Schedule 22), MPUC Docket No. G-999/CI-21-135; Direct Testimony and Schedules of Richard L. Derryberry on Behalf of Northern States Power Company, MPUC Docket No. G002/CI-21-610/OAH Docket No. 71-2500-37763, (Oct. 22, 2021) ("Derryberry Direct"), Schedule 2, Xcel Energy Minnesota Gas Supply White Paper, p. 26, Table 3.

1	unprecedented levels. For this reason, the Company over-procured spot gas during
2	the February Event despite maximizing curtailment. The load forecasts that Xcel
3	actually used, which included forecasts for all (firm and non-firm) customers,
4	exceeded actual load by 6.26 percent on February 14 and by 12.28 percent on
5	February 17. ⁹⁶
6	Although it might not seem substantial that Xcel's load forecast exceeded actuals
7	by 6 percent on February 14, it is worth highlighting the full implications of the
8	Company's approach to supply planning. According to the Schedules provided by
9	Xcel, the Company planned to procure a small reserve margin (less than 2
10	percent) above forecast load in order to ensure sufficient supply should actual
11	load be higher than anticipated. ⁹⁷ While this may sound reasonable at first glance,
12	Xcel maximized curtailments on February 14, while still planning a reserve
13	margin based on an escalated load forecast that included these curtailments.98 Had
14	Xcel based its supply planning off of a forecast for non-interrupted customers
15	only, the Company would have seen that it was planning to exceed this forecast
16	by 11 percent on what was expected to be the peak day of the Event, thus
17	increasing the need to over-procure on each day of the long weekend in order to
18	meet the requirement that purchases be ratable. This highly conservative approach
19	can hardly be considered a reasonable balance between minimizing risk and cost.

⁹⁶ Xcel Energy, Public Response to DOC IR#14 (Attached as Exhibit___(BC-D), Schedule 22), MPUC Docket No. G-999/CI-21-135

⁹⁷ Derryberry Direct, Schedule 2, Xcel Energy Minnesota Gas Supply White Paper, p. 26.

 ⁹⁸ *Ibid.*; Xcel Energy, Response to CUB IR #60a (Attached as Exhibit___(BC-D), Schedule 13), MPUC Docket No. G002/CI-21-610/OAH Docket No. 71-2500-37763; Xcel Energy, Response to OAG IR#118 (Attached as Exhibit___(BC-D), Schedule 23), MPUC Docket No. G-999/CI-21-135

1 Xcel did not address this aspect of its load forecasting in its testimony or explain

2 why it was a reasonable approach.

3 Table 7: Xcel's Load Forecast During the Event

	Formula	2/14/2021	2/17/2021
A. Load Forecast as of Supply Meeting ⁹⁹		754,477	644,628
B. Estimated Interrupted Load ¹⁰⁰		(61,806)	(43,095)
C. Estimated Forecast for Non-Interrupted Load	A - B	692,671	601,533
D. Actual Load ¹⁰¹		710,041	574,135
E. Error, Estimated Forecast of Non-Interrupted Load	(C-D)/D	(2.45%)	4.77%
G. Error, Forecast Used to Inform Planning	(A-D)/D	6.26%	12.28%
F. Planned Supply as of Supply Meeting ¹⁰²		766,354	655,946
G. Planned Over-Supply for Non-Interrupted Load	(F-C)/C	10.64%	9.05%

5	Q49.	What was the consequence of MERC and Xcel's conservative approach to
6	loa	d forecasting on February 14 and 17?
7	A49.	MERC and Xcel's conservative approach to forecasting on the key dates of
8		February 14 and 17 led to the over-procurement of daily spot gas for each day of
9		the long weekend (February 13-16) and on February 17. Due to the utilities' own
10		conservative planning, they were forced to ramp down storage to avoid delivering
11		excess supply. As calculated in Q70 and Q71, the result was substantially
12		escalated costs for customers.

⁹⁹ Derryberry Direct, Schedule 2, Xcel Energy Minnesota Gas Supply White Paper, p. 26.

¹⁰⁰ Northern States Power Company, Response to OAG IR#118 (Attached as Exhibit___(BC-D), Schedule 23), MPUC Docket No. G-999/CI-21-135.

¹⁰¹ Derryberry Direct, Schedule 2, Xcel Energy Minnesota Gas Supply White Paper, p. 26. ¹⁰² *Ibid.*

1	Q50.	Did MERC or Xcel provide testimony that explains their load forecasting
2	apj	proach or describes a reasonable benchmark for preventing over-
3	pro	ocurement?
4	A50.	No, neither Company provided any justification or support for the accuracy of
5		their load forecasting. Xcel has stated only that the Company's metrics for
6		"ensuring that the level of supply is reliable, avoids over procurement, and is the
7		lowest reasonable cost for customers" is to ensure 100% reliability for firm
8		customers and rely on adjusting storage to avoid over-procurement – a strategy
9		that in reality only ensures that Xcel avoids over-delivering rather than over-
10		procuring. ¹⁰³
11	Q51.	Have you analyzed the impact of MERC and Xcel's conservative approach to
12	loa	d forecasting on February 14 and 17?
13	A51.	Yes. I analyzed a range of scenarios through which the utilities could have
14		reduced costs for ratepayers through better planning, including through less
15		conservative load forecasting. In order to contextualize MERC and Xcel's
16		historical forecasting errors, I requested historical information on January-
17		February load forecasts and actuals from each utility. MERC NNG provided its
18		historical forecasts and actuals for the Company's combined Sales and
19		Transportation customers over January and February of 2018-2020. Over this
20		time, MERC NNG's forecast errors have exceeded 10 percent on only 15 of 278

¹⁰³ Xcel Energy, Public Response to CUB IR #68 (Attached as Exhibit___(BC-D), Schedule 24), MPUC Docket No. G002/CI-21-610, OAH Docket No. 71-2500-37763.

1	days, or 8 percent of the time. Errors have exceeded 15 percent only 3 percent of
2	the time, and there was not a single date over the period analyzed in which error
3	rates reached 20 percent or more. ¹⁰⁴ Moreover, MERC NNG's forecasting errors
4	of over 5 percent or more during these winter dates have almost always been
5	under-projections: MERC over-projected load by over 5 percent on only 6 dates
6	(or 3.37 percent of the time), only one of which had an error of over 10 percent,
7	and none of which exceeded 12 percent.
8	It is worth noting that interrupted volumes have not been subtracted from these
9	forecasts, given that MERC has stated that it does not have historic information
10	on interrupted volumes. ¹⁰⁵ I do not expect this fact to substantially impact these
11	calculations, given the relatively small number of curtailments that were made
12	over the dates analyzed. These numbers reflect error rates for MERC's Sales and
13	Transportation customers combined; as noted previously, when asked to separate
14	figures for Sales customers, MERC stated that it has not retained this historical
15	information. ¹⁰⁶
16	Xcel has similarly claimed that "[t]he Company does not have historical forecast
17	data that it can reliably verify was relied upon in the days in question." ¹⁰⁷

¹⁰⁴ Minnesota Energy Resources Corporation, Response to CUB IR#31 (Attached as Exhibit___(BC-D), Schedule 25), MPUC Docket No. G002/CI-21-610/OAH Docket No. 71-2500-37763

¹⁰⁵ Minnesota Energy Resources Corporation, Response to OAG #119 (Attached as Exhibit___(BC-D), Schedule 26), MPUC Docket No. G-999/CI-21-135

¹⁰⁶ Minnesota Energy Resources Corporation, Response to DOC IR #55d (Attached as Exhibit____(BC-D), Schedule 20), MPUC Docket No. G011/CI-21-611/OAH Docket No. 71-2500-37763 ¹⁰⁷ Xcel Energy, Response to CUB IR #52f (Attached as Exhibit___(BC-D), Schedule 27), MPUC Docket No.

G002/CI-21-610/OAH Docket No. 71-2500-37763

1		Based on the information that MERC has provided for Sales and Transportation
2		customers in MERC NNG – which is the only historic information on load
3		forecasts provided by either utility – I have quantified the impact of a 5 percent
4		and 10 percent over-forecast for each utility which, according to the information
5		provided by MERC, would be a historic anomaly.
6	Q52.	Are you proposing a disallowance for MERC and Xcel's failure to justify
7	the	ir load forecasts during the Event?
8	A52.	Yes, however, I will present my recommended cost disallowances in the
9		subsequent section of this testimony discussing storage optimization, as I assume
10		that avoided spot and swing purchases due to better load forecasting would be
11		offset by storage.
12	Q53.	Are you relying on hindsight to argue that, despite the utilities' reasonable
13	effe	orts, their forecasts turned out to be inaccurate and costs turned out to be
14	hig	her than anticipated for reasons that could not have been foreseen given what
15	wa	s known and reasonably knowable at the time?
16	A53.	No. As stated, MERC has not provided the information needed to calculate the
17		historic forecasting error for Sales customers only. However, even when the
18		Company's combined forecast error for Sales and Transportation customers on
19		February 17 is compared with historic errors, MERC's error of 20.26 percent on
20		this date is still a larger over-projection than on any other day in January or

1	February of 2018-2020. ¹⁰⁸ Although it would be unreasonable to expect a utility
2	to perfectly forecast load, it would also be unreasonable to conclude that this
3	highly unusual and significant forecasting error was due to pure happenstance. As
4	stated, MERC has not explained why the Company was unable to accurately
5	forecast load on these dates.
6	Xcel, on the other hand, chose to procure daily spot gas on behalf of the
7	customers that it would later curtail. The forecasting failures of both utilities
8	could have been avoided with better planning and better recognition that a utility
9	must find the balance between risk and cost.
10	Although my assessment relies on load actuals that were not known at the time,
11	this is inherent in any assessment of accuracy. It would be unreasonable to claim
12	that accuracy cannot be examined, or that utilities have no obligation to care about
13	the accuracy of their forecasts, simply because assessing accuracy requires
14	comparing forecasts to actuals. Moreover, the utilities had actuals during the
15	Event when they forecasted load for February 17 on February 16.
16	Finally, the fact that prices turned out to be higher than anticipated when supply
17	decisions were made for the long weekend is not the subject of this prudence
18	review, given that utilities knew of significantly escalated prices when making
19	these decisions. The fact that prices turned out to be higher than anticipated does
20	not mean that utilities had no obligation to react to market conditions; it simply
21	means that the cost of failing to do so was substantially greater. As previously

¹⁰⁸ See Cebulko Workpapers

stated, even when MERC and Xcel knew of unprecedented prices on February 16, 1 2 their planning became even more conservative and costly to ratepayers. **Q54**. Is it the intervenor's responsibility to demonstrate that each utility's load 3 forecast was imprudent? 4 5 A54. No. As summarized in the testimony of Witness Nelson, Minnesota law and 6 precedent place the burden of proof on the utilities to demonstrate the prudence of 7 their costs and requires that any doubt is resolved in favor of the ratepayer. As 8 summarized by Witness Nelson, although it may be challenging to precisely 9 quantify what constitutes "unreasonable" over-procurement, this does not dismiss 10 utilities or regulators from their obligation to ensure that procurement levels are consistent with providing just and reasonable rates. To the extent that utilities do 11 12 not provide the "transparency necessary to quantify the prudence of final costs,"¹⁰⁹ the Minnesota Public Utilities Commission (MPUC) has significant 13 14 latitude in determining cost disallowances. 15 **O55**. Have the utilities explained why their approaches to forecasting were reasonable? 16 17 A55. No. MERC has not explained why, despite the Company's historic ability to 18 provide accurate forecasts, MERC's forecasting errors on February 14 and 17

were reasonable. As stated previously, MERC has not provided the transparency

¹⁰⁹ Order Finding Imprudence, Denying Return on Cost Overruns, and Establishing LCM/EPU Allocation for Ratemaking Purposes, MPUC Docket No. E-002/CI-13-754 In the Matter of a Commission Investigation into Xcel Energy's Monticello Life-Cycle Management/Extended Power Uprate Project and Request for Recovery of Cost (May 8, 2015).

1	necessary to quantify where the scale of its forecasting errors were reasonable. On
2	the contrary, MERC's explanations during testimony have been misleading:
3	Although MERC's Witnesses have claimed that the Company pursued only a
4	"minimal" reserve margin of less than 2 percent on February 14,110 a less than 2
5	percent reserve margin is hardly minimal when load is over-projected by 34
6	percent. Any mention of this more pertinent over-projection, or of MERC's actual
7	load, is conspicuously absent in MERC's testimony.
8	Although Xcel also planned a reserve margin of less than 2 percent on both dates,
9	the Xcel's claim that this was a "slight" reserve margin is similarly misleading
10	when one considers the full context of Xcel's conservative approach to supply
11	planning.111 Because Xcel claims that it "does not have historical forecast data
12	that it can reliably verify was relied upon" ¹¹² during previous winters, it is not
13	possible to contextualize the Company's approach to forecasting during the
14	Event. In addition, Xcel has not explained why maximizing curtailment while
15	simultaneously procuring supply for curtailed customers was reasonable, given
16	that it could have separated these two customer classes in its load forecasts – just
17	as all three utilities do when planning to meet capacity requirements. ¹¹³

18

Please summarize your conclusions on load forecasting and why it is Q56.

19

pertinent to this case?

¹¹⁰ Mead Direct, Exhibit____(SRM-D), Schedule 7. ¹¹¹ Krug Direct, p. 34, line 8.

¹¹² Xcel Energy, Response to CUB IR#52f (Attached as Exhibit___(BC-D), Schedule 27), MPUC Docket No. G002/CI-21-610/OAH Docket No. 71-2500-37763 ¹¹³ Heer Direct, p. 10, line 17; Mead Direct, p. 19, lines 17-19; Derryberry Direct, p. 10, lines 6-11; Derryberry

Direct, Schedule 2, Xcel Energy Minnesota Gas Supply White Paper, p. 3.

1	A56.	Accurate load forecasts are important because the forecast is the basis for
2		understanding how much supply is necessary to meet load. From there, the
3		Company can determine the optimal strategy for delivering supply to load that
4		maintains reliability at the lowest reasonable cost. Our analysis found that MERC
5		and Xcel made unreasonably conservative load forecasts which made it appear
6		that the utilities needed more supply than they actually did. This led to excessive
7		over-procurement of daily spot purchases rather than utilization of more cost-
8		effective alternatives, like storage or peaking facilities.

V. Storage Optimization

9	Q57.	What is the purpose of this section of your testimony?
10	A57.	The purpose of this section is to analyze whether the utilities' use of storage
11		during the event was prudent, including how the utilities could have increased
12		their utilization of storage with better planning.
13	Q58.	Why is storage important, and how does it relate to providing reliable and
14	aff	ordable supply to customers?
15	A58.	There are three main types of natural gas storage: underground, LNG, and
16		pipeline, also called line packing. The most common type of storage is
17		underground. ¹¹⁴ The utilities can either own or contract for storage, but the
18		mechanics and benefits are the same. Storage operators typically inject, or fill the
19		facility, when prices are cheap during the summer and withdraw in the winter

¹¹⁴ U.S. Energy Information Administration, The Basics of Underground Natural Gas Storage, https://www.eia.gov/naturalgas/storage/basics/

1	when prices and demand are high. Storage is both an economic and physical
2	hedge. It is an economic hedge because it can be dispatched when prices are high
3	rather than relying on spot or call options. It is a physical hedge because the gas is
4	already owned and contractually within the possession of the utility and is another
5	geographical supplier that can be called upon should a different source be
6	unavailable.
7	Finally, storage is also used for intra-day balancing. As CenterPoint Witness
8	Grizzle testified, the utility uses storage to balance its gas supply to varying levels
9	of daily demands. ¹¹⁵ That is, the utility can call upon it if demand is more than the
10	utility originally anticipated.

a. CenterPoint

12	A59.	Of the three utilities, CenterPoint appears to have the highest performance in
13		maximizing available storage resources. As discussed in the load forecasting
14		section of my testimony, given that CenterPoint's load forecasts on February 14
15		and 17 were relatively accurate, the utility was better able to maximize available
16		storage on these dates. However, although ramping down some amount of storage
17		during the non-peak dates of the long weekend was inevitable, this need could
18		have been reduced had the Company planned to call curtailments, or use more of
19		its peaking facilities, on February 14.

¹¹⁵ Grizzle Direct, p. 8, lines 13-15.

1	Q60.	Please discuss the relationship between storage, daily spot gas purchases and
2	pea	aking facilities as part of the utility's supply plan.
3	A60.	CenterPoint uses its storage to help balance its system. When purchasing supplies
4		on February 12 to meet load on the anticipated peak date of February 14,
5		CenterPoint planned to nominate all available storage. ¹¹⁶ CenterPoint was able to
6		slightly surpass these plans because operating conditions at the Company-owned
7		Medford/Waterville facility enabled the utility to withdraw more gas than could
8		reasonably be anticipated. ¹¹⁷ Although CenterPoint did not maximize withdrawals
9		on February 13 or 16, the Company claims that this was due to the requirement
10		that purchases be ratable for each day of the long weekend as described in Q41.
11		The utility claims that it was thus forced to ramp down storage on the non-peak
12		dates in order to balance the system. ¹¹⁸
13		Had CenterPoint's supply plan for the four-day weekend increased its use of
14		peaking plant dispatch or curtailment on February 14, the utility could have
15		purchased less spot gas on each date of the long weekend and thus reduced the
16		need to ramp down storage on these dates. Had CenterPoint maximized peaking
17		plants and curtailment on every day of the long weekend, rather than just the peak
18		date, the Company would have been able to offset spot and call option purchases
19		while keeping storage withdrawals at levels like those witnessed during the Event.

¹¹⁶ Toys Direct, p. 40, Table 13, p. 48, Table 18.
¹¹⁷ CenterPoint Energy, Response to CUB IR #18b (Attached as Exhibit___(BC-D), Schedule 28), MPUC Docket No. G-999/CI-21-135.

¹¹⁸ CenterPoint Energy, HCTS Response to CUB IR #6b, MPUC Docket No. G-999/CI-21-135 (Attached as Exhibit___(BC-D), Schedule 17); CenterPoint Energy, Responses to CUB IR #18a and #18c (Attached as Exhibit___(BC-D), Schedule 28), MPUC Docket No. G-999/CI-21-135

1		In other words, there were a variety of options available to the Company to reduce
2		spot purchases over the long weekend. In my cost disallowances, I have assumed
3		that CenterPoint maximized curtailments on each day of the event while keeping
4		storage withdrawals constant.
5	Q61.	Please describe CenterPoint's use of storage on February 17.
6	A61.	Although CenterPoint maximized available storage on February 14, storage
7		utilization dropped significantly from [BEGIN HIGHLY CONFIDENTIAL
8		TRADE SECRET] [END HIGHLY CONFIDENTIAL TRADE SECRET]
9		on February 17. ¹¹⁹ CenterPoint explained that this reduced figure was the
10		maximum amount of storage available on February 17. ¹²⁰ The decrease in
11		available storage was due primarily to the automatic decrease of BP Canada daily
12		withdrawal allowances after CenterPoint had fully utilized available seasonal
13		swing volumes at the Ventura facility. ¹²¹ The fact that operating conditions no
14		longer permitted withdrawals to exceed the typical daily maximum at the
15		Company-owned Medford/Waterville facility also played a minor role. ¹²²
16	Q62.	Is CenterPoint's explanation on its use of storage on February 17 satisfactory

17 to you?

¹¹⁹ CenterPoint Energy, HCTS Response to CUB IR #6 (Attached as Exhibit___(BC-D), Schedule 17), MPUC Docket No. G-999/CI-21-135.

 ¹²⁰ CenterPoint Energy, Response to CUB IR #13 (Attached as Exhibit____(BC-D), Schedule 29), MPUC Docket No.
 G-008/M-21-138/OAH Docket No. 71-2500; Toys Direct, p. 60-61.
 ¹²¹ Ibid.

¹²² CenterPoint Energy, HCTS Response to CUB IR #6 (Attached as Exhibit___(BC-D), Schedule 17), MPUC Docket No. G-999/CI-21-135; CenterPoint Energy, Response to CUB #18b (Attached as Exhibit___(BC-D), Schedule 28), MPUC Docket No. G-999/CI-21-135.

1 A62. Yes.

b. MERC

O63. Did MERC optimize its use of storage during the event? 2 3 A63. No. Because MERC over-projected MERC NNG load by 10 percent and 34 percent on February 14 and 17, respectively, the utility was forced to ramp down 4 storage withdrawals by 17 percent on February 14, and by 49 percent on February 5 6 17 to match supply with demand. Since MERC forecasting errors for MERC 7 NNG led to the over-procurement of spot gas purchases for each day of the long weekend, the need to reduce storage over these dates was higher than necessary 8 9 and reached a maximum reduction of 49 percent.

c. Xcel

10 Q64. Did Xcel optimize its use of storage during the event?

11	A64.	No. Because Xcel chose to base its supply plans on load forecasts that included
12		substantial load that would later be curtailed, the Company's planned supplies
13		exceeded actual load by 8 percent on February 14, and by 14 percent on February
14		17. Xcel was thus forced to reduce storage withdrawals by 18 percent on February
15		14, and by 22 percent on February 17 to balance the system. Moreover, since
16		Xcel's duplicative supply planning led to over-procurement of spot gas for every
17		day of the long weekend, the need to reduce storage withdrawals over each day of
18		the weekend was high and reached a maximum of 38 percent in storage
19		withdrawal reductions on February 16. Although Xcel's decision to procure

1		supplies for curtailed customers was a significant source of the problem, had Xcel
2		been able to maximize its peaking plants on February 14, this would have further
3		minimized the need to reduce storage.
4	Q65.	Have the utilities explained why, despite failing to optimize storage during
5	the	event, their use of storage during the event was prudent?
6	A65.	No. The explanations provided by the utilities are misleading. The three utilities
7		have framed their reduction of storage as an action needed to balance the system
8		and which saved ratepayers money given the penalties for oversupplying. ¹²³
9		Storage is certainly used for balancing the system, however, this "need" to
10		balance was due to the utilities' own overly conservative forecasts, or decision to
11		not maximize curtailment and peaking resources, that resulted in the excessive
12		reliance on daily spot and swing purchases to meet demand.
13		Although CenterPoint's storage utilization was the highest among the three
14		utilities, CenterPoint has not explained why, when faced with spot gas prices that
15		were already at least five times the prevailing price, it was prudent to avoid
16		maximizing peaking plant dispatch on February 14 and thereby minimize the need
17		to reduce storage on the non-peak dates of the long weekend. I will address
18		peaking plant dispatch in Section VII of my testimony. I will note that
19		CenterPoint's claim that customers would have been subjected to \$100 million or
20		more in imbalance penalties had they not reduced storage masks the fact that the

¹²³ CenterPoint Energy, Response to CUB #6b (Attached as Exhibit____(BC-D), Schedule 17), MPUC Docket No. G-999/CI-21-135; Derryberry Direct, Schedule 2, Xcel Energy Minnesota Gas Supply White Paper, pp. 32-34; Mead Direct, p. 57, lines 7-12.

1	need to reduce storage would have been minimized had CenterPoint curtailed all
2	its interruptible customers and dispatched their peaking facilities to decrease
3	demand on February 14. ¹²⁴
4	Xcel and MERC have failed to acknowledge that their storage utilization was sub-
5	optimal and have offered explanations that are misleading and illogical. Even
6	though Xcel could have utilized more storage with better planning, Xcel's
7	Witness Steven H. Levine claims that the Company, "maximized its use of
8	storage, to the benefit of its customers" during the Event. ¹²⁵ Witness Levine
9	reasons that because Xcel "nominated its maximum amount of storage capability
10	and these maximum storage amounts were reflected in the daily purchase
11	decisions NSPM [Xcel] made," the Company also maximized storage
12	withdrawals. ¹²⁶ MERC Witness Timothy C. Sexton makes a very similar
13	argument that "storage nominations were at maximum levels and as a result,
14	MERC maximized the use of its storage capacity during the February Event." ¹²⁷
15	Maximizing storage nominations does not necessarily mean that withdrawals
16	were also maximized. According to this logic, Xcel and MERC could over-project
17	load by two or three or ten-fold, fail to withdraw any storage, but still claim
18	optimal storage utilization because the utilities maximized storage nominations

¹²⁴ CenterPoint Energy, HCTS Response to CUB IR #6b (Attached as Exhibit___(BC-D), Schedule 17), MPUC Docket No. G-999/CI-21-135.

¹²⁵ Direct Testimony and Schedules of Steven H. Levine on Behalf of Northern States Power Company, MPUC Docket No. G002/CI-021-610/OAH Docket No. 71-2500-37763, (Oct. 22, 2021) ("Levine Direct"), Schedule 2, Review of NSPM's Natural Gas Procurement for Retail Natural Gas Customers, p. 37, paragraph 51.

¹²⁶ Levine Direct, Schedule 2, Review of NSPM's Natural Gas Procurement for Retail Natural Gas Customers, p. 42, paragraph 64. ¹²⁷ Sexton Direct, p. 32, lines 12-14.

1		during the planning process. At issue in this prudence review is not whether Xcel
2		and MERC maximized storage nominations, but rather storage utilization.
3		Unfortunately for ratepayers, because Xcel and MERC significantly over-
4		procured gas, the companies were not able to maximize storage withdrawals.
5		Due to the misleading and incomplete nature of these explanations, MERC and
6		Xcel have not met their burden of proof to demonstrate that the failure to
7		maximize storage – despite having the ability to do so with better planning- was
8		prudent.
		d. Load Forecasting and Storage Disallowance Recommendations
9	Q66.	Are you proposing a specific disallowance for each utility?
10	A66.	No, I am not. For each of the core issues in my testimony, I am providing a range
11		of disallowances for each utility.
12	Q67.	Why are you providing a range of disallowances?
13	A67.	In my experience, it is helpful for a Commission to see multiple scenarios to
14		understand the impact, or magnitude, of a utility's decision. As such, I will make
15		a range of recommendations on each narrow issue. Built off my analysis, my
16		colleague Ron Nelson proposes a specific disallowance for each utility that
17		considers our assumptions across utilities and the reasonableness of the total
18		proposed disallowance.
19		I am also showing disallowances for the two key planning periods during the
20		Event, February 13-16 and February 17. The facts of what the utilities knew when

they made their decisions were different on those two days and therefore, I list the
 two periods separately.

Q68. You said earlier that your approach is holistic and recognizes the interdependencies of each of the utility's various decisions. Can you explain the how that impacts your analysis?

A68. Yes, I account for the interdependencies of the available resources. For instance,
if a scenario includes the utility maximizing its curtailments, then that would
likely impact the amount of storage or peaking resources it uses. Therefore, the
recommendations from each section can be added together to a total disallowance
recommendation for each utility.

11 Q69. Have you documented how you arrived at your disallowance calculations?

- A69. Yes. I am filing my workpapers, which provide all documentation for my
 calculations for each utility. My calculations apply a small number of inputs that I
 am in the process of confirming through pending Information Requests. For
 example, CenterPoint and Xcel have not yet distinguished between the spot and
 swing prices of gas over each day of the event. My current calculations are based
 on averages reported by the utilities and will be updated in subsequent phases of
 this proceeding upon receiving confirmed data for a small number of inputs.
- Q70. What is your range of disallowance for CenterPoint on the issue of
 maximizing storage?

A70. I am not proposing a disallowance for CenterPoint on this issue as the Company
 appears to have accurately forecasted load for the Event.

3 Q71. What is your range of disallowance for MERC on the issue of maximizing

storage?

4

5	A71.	As indicated in Table 8 below, I recommend between \$8.5 million and \$18
6		million in disallowances for MERC NNG due to the utility's unreasonably
7		conservative load forecasting and subsequent failure to maximize storage on the
8		key planning dates of February 14 and 17. Had MERC NNG's over-projections
9		fallen within the Company's historical limits of 5 to 10 percent, the Company
10		could have substantially reduced costs: A 5 percent forecasting error would have
11		saved \$10.2 million on February 17 alone given the scale of the utility's aberrant
12		and unexplained 34 percent over-projection on this date. The remaining \$7.8
13		million in savings can be attributed to the reduced need for spot purchases over
14		each day of the long weekend. Because MERC's forecasting error for MERC
15		NNG on February 14 was 9.95 percent –under the 10 percent threshold – a 10
16		percent forecasting error would have saved customers \$8.5M on February 17
17		only.

Table 8:Proposed MERC Disallowance due to Conservative Load Forecasting and Failure to
 Maximize Storage

	5% Forecasting Error on February 14 and 17	10% Forecasting Error on February 17
Full Event (2/13-2/17) Total	\$18,028,508.47	\$8,454,944.63
2/17 Only	\$10,202,942.71	\$8,454,944.63

-		
2	Q72.	What is your range of disallowance for Xcel on the issue of maximizing
3	sto	rage?
4	A72.	Had Xcel chosen to avoid procuring supply for the same customers that the
5		Company curtailed, the utility could have saved between \$1.5 million and \$9.7
6		million. Like MERC, Xcel's approach was the most conservative on February 17.
7		A 5 percent forecast error would thus have saved \$4.8 million on February 17
8		alone. Containing the forecasting error to 10% would have saved \$1.5 million on
9		February 17 only.

10 Table 9. Proposed Xcel Disallowance due to Conservative Load Forecasting and Failure to Maximize Storage 11

	5% Forecasting Error on February 14 and 17	10% Forecasting Error on February 17
Full Event (2/13-2-17) Total	\$9,734,465.31	\$1,513,382.56
2/17 Only	\$4,836,909.89	\$1,513,382.56

12

1

VI. Interruptible Customer Curtailment

Q73. 13

What is an interruptible tariff?

14 A73. An interruptible tariff is a utility program that offers certain customers a lower

rate in exchange for agreeing to be curtailed during times of shortage or high 15

demand.128 16

¹²⁸ Harunuzzaman, M., Koundinua, S. Cost Allocation and Rate design for Unbundled Gas Services, National Regulatory Research Institute, The Ohio State University, page 98 (May 2000).

O74. Which type of customers use interruptible tariffs? 1 2 A74. For the most part, utilities across the country offer these programs to large 3 commercial and industrial (C&I) customers. From there, we can split interruptible 4 C&I customers into transportation customers and firm system sales customers. 5 Interruptible transportation customers are responsible for procuring their own natural gas but rely on the utility to deliver the gas. Interruptible system sales 6 7 customers rely on the utility to purchase and deliver natural gas but are served at a reduced rate in exchange for the curtailment option. 8 9 **Q75**. What is the value of an interruptible program for ratepayers? 10 A75. In exchange for a lower rate, interruptible customers agree to be curtailed at the 11 request of the utility. By-and-large, the concept of these programs is to reduce the 12 amount of capacity a utility needs to procure on behalf of its customers. Utilities 13 design their systems to meet the design day needs of its customers, and if the utility can reduce peak need by planning not to provide firm service for 14 15 interruptible customers during peak events, costs are reduced for all ratepayers. If priced correctly, then an interruptible program should be to the benefit of all 16 17 customers. 18 **O76**. What reasons could a utility call for an interruption?

A76. This depends on the utility's tariffs. Some tariffs are specific and will provide
specific reasons that the utility could curtail its customers. Others, like the tariffs
of CenterPoint, MERC, and Xcel, are non-specific.

1	Q77.	Could a utility ask an interruptible customer to curtail to meet a local
2	rel	iability constraint?
3	A77.	Yes, if the tariff allows for those types of interruptions.
4	Q78.	Could a utility ask an interruptible customer to curtail for economic reasons,
5	tha	at is, if the price of natural gas is extraordinary?
6	A78.	Yes, if the tariff allows for those types of interruptions.
7	Q79.	Did CenterPoint, MERC and Xcel curtail customers during the Event?
8	A79.	Each utility took a different action.
9		• CenterPoint curtailed 31 customers comprising about 23 percent of its available
10		interruptible load,
11		• MERC did not curtail any customers, and
12		• Xcel curtailed all interruptible transportation and system sales customers.
		a. CenterPoint
13	Q80.	Let's take each company in turn. Please start with CenterPoint. Will you
14	ple	ease describe the Company's interruptible tariffs?
15	A80.	CenterPoint has several rate schedules that include interruptible service, such as
16		the Small Volume Dual Fuel Sales Service, the Small Volume Firm/Interruptible
17		Sales Service, the Large Volume Dual Fuel Sales Service, the Large Volume
18		Firm/Interruptible Sales Service, the Small Volume Dual Fuel Transportation
19		Service, the Small Volume Firm/Interruptible Transportation Service, the Large
20		Volume Dual Fuel Transportation Service, and the Large Volume

1		Firm/Interruptible Transportation Service. CenterPoint also has the Process
2		Interruptible Sales Service Rider which makes the Dual Fuel Sales Service
3		available to certain customers who have no alternative fuel facilities. ¹²⁹
4		While the Company has an array of interruptible tariffs, these options all share
5		common terms and conditions. All customers on these tariffs are required to
6		"curtail the use of gas on one (1) hour's notice when requested by CenterPoint
7		Energy." ¹³⁰ Further, "CenterPoint Energy can interrupt End User if capacity
8		constraints require or for other appropriate reasons." ¹³¹
9	Q81.	Does CenterPoint agree that it can curtail customers for economic reasons?
10	A81.	CenterPoint agrees that there are no legal, tariff, or contractual provisions that
11		preclude interruptible customer curtailment based on economic reasons. ¹³²
12	Q82.	Earlier you said that the CenterPoint only curtailed 31 customers during the
13	Eve	ent. Can you elaborate on CenterPoint's curtailment actions?
14	A82.	In an April 2021 report to the Commission, CenterPoint noted that as the 4-day
15		weekend approached, the Company planned on February 12, 2021, to curtail 31
16		customers from February 12- February 16, with such curtailment representing
17		"approximately 30-40 percent of interruptible load." ¹³³ However, based on our

¹²⁹ See CenterPoint Energy Gas Rate Book at https://www.centerpointenergy.com/en-

us/Documents/RatesandTariffs/Minnesota/CPE-MN-Tariff-Book.pdf.

¹³⁰ *Ibid.* at Section V p. 4, p.5, p.6, p.7, p.19.a, Section VII p. 1.a, p. 2.a, p. 3.a, p. 5.a, p. 10.b.

¹³¹ *Ibid.* at Section VII page 10.b.

¹³² CenterPoint Energy, Response to OAG IR #108 (Attached as Exhibit___(BC-D), Schedule 30), MPUC Docket No. G-999/CI-21-135.

¹³³ CenterPoint, In the Matter of a Commission Investigation into the Impact of Severe Weather in February 2021 on Impacted Minnesota Natural Gas Utilities and Customers Docket No. G-999/CI-21-135/21-138.

calculations, the Company called only 23 percent of available interruptible load 1 during the Event from February 13 - 17.¹³⁴ 2 083. Can you please explain why the CenterPoint only curtailed a limited number 3 of customers and available interruptible load? 4 A83. 5 CenterPoint reported that it maintained reliable natural gas service to all firm customers, except for certain sections that were forecasted to have system 6 deliverability constraints. Witness Olsen testified that CenterPoint identified 8 7 8 different sections of the distribution system where deliverability was expected to be limited.¹³⁵ Thus, on Friday, February 12, the Company decided to curtail only 9 31 customers from February 13 - 16 when demand was expected to decline.¹³⁶ 10 **Q84**. How did CenterPoint decide who to curtail? 11 A84. 12 CenterPoint stated that the determination is based on rate margin, that is, the largest customers were called upon first.¹³⁷ 13 Why did CenterPoint choose not to curtail based on price? 14 **O85**. A85. Witness Olsen testified that he was unaware of any circumstance in which 15 CenterPoint has curtailed based on price alone.¹³⁸ Witness Olsen continued that 16 CenterPoint was required to purchase gas for the 4-day period on Friday, 17

¹³⁶ CenterPoint Energy, Report on Gas Cost Investigation, Docket No. G-999/CI-21-135/21-138, page 10 (April 9, 2021).

¹³⁴ See Cebulko Workpapers

¹³⁵ Olsen Direct, p. 29, lines 8-9.

¹³⁷ Olsen Direct, p. 19, lines 13-15.

¹³⁸Olsen Direct, p.32, lines 15-16.

1

2

February 12, thus there were no apparent threats to physical supplies nor could the utility have anticipated unprecedented prices.¹³⁹

3 Q86. Do you find that argument convincing?

4 A86. No. The statement that a Company has not taken an action in the past is not a 5 convincing argument that it cannot in the future especially if the action is in the 6 public interest. As described earlier in my testimony, by the time CenterPoint was 7 procuring gas for February 13-16, it understood prices were already at the 98th 8 percentile and the worst of the storm was yet to occur. Pipelines had issued SOLs 9 and critical day designations, signaling that they were capacity constrained. The 10 peak day was expected to be on February 14 during the middle of the 4-day period. As Witness Nelson explains, we do not expect the Company to predict 11 12 ~\$180/Dth gas, but gas purchased on February 11 for gas on February 12 had 13 already reached \$15.42/Dth and \$15.68/Dth at Ventura and Demarc respectively. 14 There is no logical scenario where the price over the weekend would decrease. 15 By Thursday, February 11, a reasonable utility would have recognized the significant uncertainty and managed its risk by interrupting all eligible customers, 16 17 a resource that customers have been paying for. Yet CenterPoint chose not to call 18 its known, relatively inexpensive resource, and instead chose to rely mostly on 19 spot purchases. 20 Moreover, even if the Company could claim ignorance to the unprecedented 21 prices when it procured gas for the four-day period on February 12, it has

¹³⁹ Olsen Direct, p. 32, lines 19-21, p. 33, lines 1-3.

absolutely no justification that it did not know where prices would be on February 1 2 16 when it purchased gas for February 17. **O87.** Does CenterPoint explain why it only called a minimal amount of 3 curtailment for February 17? 4 A87. No. On February 16, the Company knew that gas prices had reached 5 unprecedented levels, it should have known or been able to see that it had a 98 6 percent compliance with customer curtailment, and it would have known that the 7 8 daily spot market prices were still extraordinary. Yet, the Company chose to call 9 only 4,440 Dth of interruption, or 4 percent of its interruptible load, and to 10 continue to subject its customers to gas prices that had settled at \$192/Dth the day before. 11 **Q88.** Do you any final thoughts on CenterPoint's unwillingness to call all its 12 interruptible customers? 13 A88. Yes. CenterPoint's only explanation for not curtailing more customers is that it 14 15 had never previously curtailed for economic reasons. In my view, this is not a prudent decision. Even if the utility had never called on non-firm customers to 16 17 curtail for economic reasons, a reasonable utility with full knowledge of price of 18 natural gas, both on February 12 and 16, should have done all that they could do 19 to avoid purchasing gas at those high costs to save their customers tens of millions 20 of dollars.

b. MERC

1 089. Let's turn to the next utility. Will you please describe MERC's interruptible tariffs? 2 3 A89. Customers taking service under NNG Interruptible Service, NNG Agricultural Grain Dryer Service, NNG Electric Generation Service, NNG Firm/Interruptible 4 5 Service, Consolidated Interruptible Service, Consolidated Agricultural Grain 6 Dryer Service, Consolidated Electric Generation Service "may be interrupted, 7 curtailed or discontinued at any time at the option of the Company."¹⁴⁰ Within its Rate Book General Rules, Regulations, Terms, and Conditions, MERC provides 8 9 an order of priority for "when in the opinion of the Company it becomes necessary to curtail or interrupt service to any of the Company's customers."¹⁴¹ 10 All interruptible customers must either (1) have and maintain adequate standby 11 12 facilities and have available sufficient fuel supplies to maintain operations during periods of curtailment or (2) have the ability to fully and completely suspend the 13 use of interruptible gas on one hour's notice when requested to do so by the 14 Company.¹⁴² 15 **Q90.** Did MERC call on any interruptible customers during the Event? 16

17 A90. No.

18 Q91. Why did MERC not curtail its interruptible customers?

¹⁴¹ *Ibid.* at 8.01.

¹⁴⁰ See MERC Tariff and Rate Book, General Rules, Regulations, Terms and Conditions ("MERC Rules and Regulations") at https://www.minnesotaenergyresources.com/company/tariffs/rules.pdf.

¹⁴² *Ibid.* at 8.01.

1	A91.	Witness Theodore Eidukas testified that the Company's tariffs do not provide for
2		price-based curtailment and can only curtail when there is a distribution system
3		constraint, operational issue, or pipeline capacity limitation. ¹⁴³ Eidukas continues
4		that there were no constraints on its systems. Further, Witness Eidukas testified
5		that even if MERC was permitted to curtail, it would have had to curtail by 8:00
6		a.m. Friday, February 12 for each of the following four days and the Company
7		had no reason to expect prices to reach unprecedented levels. ¹⁴⁴
8	Q92.	Do you agree with Witness Eidukas' interpretation of the tariffs?
9	A92.	No. the plain reading of the tariffs does not restrict the reasons for which the
10		Company calls a curtailment. The General Rules, Regulations, Terms and
11		Conditions states that for interruptible service, "[c]ustomers taking natural gas
12		service which may be interrupted, curtailed or discontinued at any time at the
13		option of the Company in accordance with the provisions herein." ¹⁴⁵
14		In response to an information request inquiring whether MERC has any legal,
15		tariff, or contractual provisions preventing economic curtailment of customers,
16		MERC claims that it cannot curtail customers based on pricing and references
17		MERC Tariff Sheet No. 8.40-8.41a which states that, "[t]he following priorities
18		will be followed when operational and supply conditions require service
19		interruptions with highest priorities listed first." ¹⁴⁶ While MERC claims that this

¹⁴³ Eidukas Direct, p. 28, lines 8-10.
¹⁴⁴ Eidukas Direct, p. 29, lines 4-5.
¹⁴⁵ MERC Rules and Regulations at 8.01.
¹⁴⁶ MERC Rules and Regulations at 8.40-8.41a.

- means that curtailments may only be triggered by available pipeline capacity and
 supply, this is not true.
- The term "supply conditions" is not explicitly defined by MERC in its tariffs. The 3 tariffs do state that "[MERC] does not employ any technical or special terms 4 5 which are unique to the application of any of its rate schedules, rules or regulations. All terms used by the Company are common terms in the industry. 6 For clarification purposes such terms are defined in Rules and Regulations."¹⁴⁷ As 7 8 "supply conditions" is not a term defined in MERC's Rules and Regulations, this 9 term is left up to interpretation based on common industry definitions. Supply 10 conditions are reasonably interpreted to include pricing, quantity, and weather, 11 among others. Moreover, as I stated at the beginning of this question, the plain language in the tariff provides MERC authority to interrupt at any time, stating 12 13 that customers "may be interrupted, curtailed or discontinued at any time at the option of the Company."¹⁴⁸ 14
- Q93. Did MERC investigate its tariffs to determine if economic curtailment was
 permissible?

A93. Based on what MERC has filed and produced in discovery, it does not appear that the Company put in any effort to determine if they could curtail based on price. On February 12 at 4:40 p.m., a MERC employee asked colleagues, "If marketers are shedding customers due to high priced gas, are we paying through the nose for

¹⁴⁷ See MERC Technical Terms and Abbreviations at

https://www.minnesotaenergyresources.com/company/tariffs/terms.pdf.

¹⁴⁸ MERC Rules and Regulations at 8.01.

1		gas and is it smart to curtail for economic reasons? I think the customer pays what
2		we paybut it is killing us on costs." A colleague responded that they asked
3		Sarah ¹⁴⁹ that question and "she indicated that our tariff does not allow us to curtail
4		for economic reasons. So whatever we are purchasing, will go through the AAA
5		and be passed on to all customers." Witness Sarah Mead added to the
6		conversation that "Regulatory" should weigh in, but it was her interpretation that
7		MERC could not curtail unless there is a pipeline issue. ¹⁵⁰
8	Q94.	Did the regulatory or legal department ever weigh in on the interpretation of
9	the	e tariff?
10	A94.	I do not know. The Company does not provide any evidence that there was any
11		discussion prior to purchasing gas on February 12, during the four-day period, or
12		on February 16 when procuring gas for February 17. The idea appears to have
13		been raised and dismissed on Friday February 12 as MERC watched natural gas
14		trading prices climb to historic highs. Witness Mead did send assurances to her
15		colleagues that the extraordinary costs would be collected from customers,
16		writing that, "the increased prices are expected to be recovered through normal
17		regulatory treatment from our LDC customers, however might be delayed for

¹⁴⁹ Witness Sarah Mead

¹⁵⁰ MERC, Public Response to CUB IR#21, MPUC Docket No. G011/CI-21-611, OAH Docket No. 71-2500-37763 (Attached as Exhibit___(BC-D), Schedule 5). ¹⁵¹ MERC, Public Response to CUB IR#21, p. 45, MPUC Docket No. G011/CI-21-611, OAH Docket No. 71-2500-

^{37763 (}Attached as Exhibit___(BC-D), Schedule 5).

1	Q95.	Witness Eidukas testified that even if MERC was permitted to curtail, it
2	WO	uld have had to curtail by 8:00 a.m. Friday, February 12 for each of the
3	foll	owing four days and the Company had no reason to expect prices to reach
4	unj	precedented levels. Why would it have mattered if the Company curtailed for
5	eco	nomic reasons?
6	A95.	There are numerous reasons. I will focus on four key reasons. First, a reasonable
7		utility would not have uncertainty about the terms of its tariffs. The gas
8		procurement and senior management team should have absolute clarity on the
9		issue. It appears there was uncertainty amongst MERC employees on if MERC
10		could curtail for economic purposes. This lack of clarity on tariff terms is
11		inexcusable and unreasonable.
12		Second, by Thursday, February 11, MERC knew that prices were in the 98 th
13		percentile, and the worst of the storm had yet to occur. They knew that pipelines
14		had issued warnings which suggests that the market was tightening and there
15		could be reliability issues (even if, with hindsight, we know MERC did not have
16		reliability challenges).
17		Third, going into a four-day gas buying period with great uncertainty, a
18		reasonable utility would have locked in the benefit to the system and customers
19		by curtailing interruptible customers. It is a resource that has already been paid for
20		by customers, the price is known, it reduces the customers exposure, and the
21		utility can make a reasonable estimate of the level of compliance with its call.

1		Finally, Witness Eidukas omits that MERC knew the unprecedented gas prices on
2		February 16 when it procured gas for February 17 yet continued to choose not to
3		curtail customers.
4	Q96.	What did MERC know on February 16 when it procured gas for February
5	17?	
6	A96.	Like CenterPoint, MERC's testimony is focused on what it knew leading into the
7		four-day weekend and ignored it actions on Tuesday, February 16 for delivering
8		gas on Wednesday, February 17. By February 16, the Company knew that its load
9		forecasts were consistently off and that the settled price of natural gas was greater
10		than \$150/Dth on NNG. Yet given all that information, the Company continued to
11		significantly over procure spot gas, not curtail interruptible customers, and not
12		fully maximizing its storage. These decisions display clear indifference for
13		customer costs.
		c. Xcel
14	Q97.	Finally, let's turn to Xcel. Will you please describe Xcel's interruptible
15	tar	iffs?
16	A97.	Xcel offers two interruptible rate schedules – Interruptible Service and
17		Interruptible Transportation Service. Customers accepting service under these rate
18		schedules agree to the following terms: ¹⁵²
19]	1. To curtail use within one hour after Company notification,

¹⁵² See Xcel Energy Minnesota Gas Rate Book at https://www.xcelenergy.com/staticfiles/xe-responsive/Company/Rates%20&%20Regulations/Mg_Section_5.pdf.
18	rea	sons?
17	Q100.	Does Xcel dispute that it could have curtailed customers for economic
16		ensure continued service to firm customers rather than for economic reasons. ¹⁵⁶
15	A99.	Witness Derryberry testified that Xcel curtailed its interruptible customers to
14	Q99.	Why did Xcel curtail its interruptible customers?
13		curtailing customers saved an estimated \$41 million. ¹⁵⁵
12		all 15 of its non-firm transportation customers. ¹⁵⁴ Witness Krug estimates that
11		customers Wednesday, February 17. Krug also reports that the Company curtailed
10		11:00 a.m. through Thursday, February 18. The Company started releasing
9		customers twice, first from February $5-9$ and again on Friday, February 12 at
8	A98.	Yes, according to Witness Krug, Xcel curtailed approximately 325 non-firm
7	Q98.	Did Xcel curtail its interruptible customers?
6	here	under shall be subject to curtailment whenever requested by Company." ¹⁵³
5	Each	of these rate schedules also include the following statement: "Delivery of gas
4		the delivery of gas sold hereunder.
3	3	3. To have access to sufficient standby alternate fuel for periods of curtailment of
2		facilities, and
1	2	2. To provide and maintain suitable and adequate alternate fuel capable standby

¹⁵³ *Ibid.* at Section No. 5 Sheet No. 10.
¹⁵⁴ Krug Direct, p. 21, lines 7-20.
¹⁵⁵ Krug, p. 34, lines 25-26.
¹⁵⁶ Derryberry Direct, Exhibit___(RLD-1), Schedule 2, p.37.

1	A100.	No, rather Xcel confirms that it is within the bounds of its authority to curtail
2		customers for economic reasons. In response to an information request, Xcel
3		confirmed that it does not have any legal, tariff, or contractual provisions that
4		would have precluded interruptible-customer curtailment based on economic
5		reasons (i.e., high market prices) during February 12–22. ¹⁵⁷
6	Q101.	When did Xcel start releasing interruptible customers?
7	A101.	Xcel started supplying some interruptible customers in the evening of February
8		17. ¹⁵⁸
9	Q102.	Was Xcel's release of interruptible customers on February 17 reasonable?
10	A102.	No. Xcel was only able to release customers on February 17 because the
11		Company over-procured spot gas due to their own poor load forecasting. As
12		described earlier in my section on load forecasting, had Xcel not decided to
13		procure gas for customers that they would interrupt then the Company could have
14		procured less spot gas and continued to curtail all customers until prices receded.
		d. Interruption Disallowance Recommendations
15	Q103.	Are you proposing a specific disallowance for each utility on the issue of
16	inte	erruptions?
17	A103.	No, I am not. As explained in Q6, I am proposing a range of disallowances on
18		each issue for each utility.

¹⁵⁷ Xcel Energy, Response to OAG IR#108 (Attached as Exhibit___(BC-D), Schedule 31), MPUC Docket No. G-999/CI-21-135.

¹⁵⁸ Krug Direct, p. 21, lines 13-15.

1	Q104.	What is your range of disallowances for CenterPoint on the issue of
2	cur	tailing interruptible load?
3	A104.	My recommended range of disallowance for the issue of curtailment begins at
4		\$17,468,247. This is the amount of money that CenterPoint could have saved
5		customers had they called maximum curtailment for gas day February 17. The
6		high end of my range is \$73,602,993, which is the cumulative savings for
7		customers had CenterPoint called for maximum curtailment for all five days of
8		the February Event.
9		

10 Table 10: CenterPoint Proposed Range of Disallowances for Curtailment

Date	Curtailment Available ¹⁵⁹ (Dth)	CP Curtailment Called (Dth)	Additional Curtailment (Dth)	Spot & Swing Rate (\$/Dth)	Curtailment Difference (\$)
2/13/21	103,550	19,000	84,550	\$191.53	\$16,193,861
2/14/21	103,550	57,000	46,550	\$190.60	\$8,855,672
2/15/21	103,550	39,400	61,150	\$189.71	\$12,121,784
2/16/21	103,550	4,400	99,150	\$192.84	\$18,963,429
4-day total					\$56,134,746
2/17/21	103,550	4,400	99,150	\$176.15	\$17,468,247
Total					\$73,602,993

¹⁵⁹ CenterPoint had 109,000 Dth of curtailment available each day. However, I assumed 5% non-compliance with the interruption call, which brings the daily total down to 103,550. 5 percent is based off actual compliance during the Event for Xcel and CenterPoint.

1	Q105.	Please describe your considerations when proposing a range of disallowances
2	for	MERC on the issue of curtailment.
3	A105.	I recommend that MERC should have only been expected to call 50 percent of its
4		interruptible load. Each utility reasonably needs the capability to increase supply
5		or shed load to help balance the system, and because MERC, unlike CenterPoint
6		and Xcel, does not have peaking resources, it is reasonable for MERC to curtail
7		fewer customers than the other two utilities in this scenario.
8		Because the maximum available interruptible load was different over each day of
9		the long weekend, I assumed that MERC curtailed 50% of the interruptible load
10		available on February 16 over each day of the weekend to comply with the
11		requirement for ratable spot purchases, which I assumed would be offset by
12		curtailments. Over the long weekend, February 16 was the date with the most
13		interruptible load available.
14	Q106.	What is your range of disallowances for MERC on the issue of curtailing
15	inte	erruptible load?
16	A106.	My recommended range of disallowance for the issue of curtailment begins at
17		\$820,185 which is the recommended disallowance based on MERC not curtailing
18		50 percent of its interruptible load on February 17. The top of my range is
19		\$4,083,076, which is the cumulative savings for customers had MERC called for
20		curtailment for all five days of the storm.

Date	Curtailment Available ¹⁶⁰ (Dth)	MERC Curtailment Called (Dth)	Additional Curtailment (Dth)	Spot & (Swing) Rate (\$/Dth)	Avoided Costs due to Curtailment
2/13/21	5,136	-	5,136	\$159.69	\$820,191.35
2/14/21	5,136	-	5,136	\$159.69	\$820,191.35
2/15/21	5,136	-	5,136	\$156.84	\$805,553.33
2/16/21	5,136	-	5,136	\$159.06	\$816,955.58
4-day total					\$3,262,891
2/17/21	4,355	-	4,355	\$188.35 (Swing)	\$820,185
Total					\$4,083,076

1 Table 11: MERC Disallowance for Curtailment 5 percent load forecasting error

2

3

Q107. Are you proposing a disallowance for Xcel on the issue of curtailing

- 4 interruptible load?
- 5 A107. Yes. I recommend a disallowance of \$1,585,125 for not maximizing curtailments
- 6 on February 17.
- 7 Table 12: Xcel Disallowance for Curtailment

Date	Curtailment Available ¹⁶¹ (Dth)	Xcel Curtailment Called (Dth)	Additional Curtailment (Dth)	Spot & (Swing) Rate (\$/Dth)	Avoided Costs due to Curtailment
2/13/21	61,858	58,545	-	\$139	-
2/14/21	64,894	61,806	-	\$137.45	-
2/15/21	67,931	64,555	-	\$133.64	-
2/16/21	62,926	59,200	-	\$137.17	-
4-day total					-
2/17/21	59,797	56,807	13,712	\$115.60	\$1,585,125
Total					\$1,585,125

¹⁶⁰ MERC Response to CUB IR #040 (Attached as Exhibit___(BC-D), Schedule 32), MPUC Docket No. G011/CI-21-611, OAH Docket No. 71-2500-37763. On February 16, MERC had 10,272 Dth of curtailment available on the MERC NNG system. 5,136 is half of 10,272.

¹⁶¹ *Ibid*.

2	Q108.	How is curtailing interruptible load a different resource than storage or
3	pea	king facilities?
4	A108.	Curtailment is a demand-side management resource, and the utility can "dispatch"
5		this resource, to some degree, by incrementally calling customers to curtail as the
6		resource is needed, but the utility does not have the same control over curtailment
7		as it does storage or peaking. A reasonable utility in the face of a severe storm,
8		knowing that the pipelines had already issued warnings, amidst significant natural
9		gas market volatility and uncertainty over a four-day gas period, would optimize
10		its demand-side and supply-side resources by first calling all its available
11		interruptible load, and then dispatching its supply-side load in a least cost, least
12		risk approach.
13		There isn't a good reason to limit curtailment so that it can be "dispatched" later
14		to meet unforeseen load; that is why a utility has peaking facilities and storage.
15		The exception to this statement is MERC, who does not have peaking facilities
16		and needed some bandwidth to shed load on February 14 as the alternative
17		resource was more gas procured at the daily spot price.
18	Q109.	Why does the bottom end of your range start with your recommended
19	disa	allowance for February 17?
20	A109.	As my colleague Witness Nelson and I state throughout our testimony, the facts
21		that the utilities knew on Tuesday, February 16 when procuring gas to meet
22		demand on February 17 are different than the facts the utilities knew prior to the

1		four-day weekend. The utilities cannot argue that they were unaware of the
2		unprecedented prices for Wednesday, February 17 when scheduling supply on
3		Tuesday February 16, because they had just experienced a four-day period with
4		extraordinary costs and the extent of the freeze-offs in Texas and Oklahoma and
5		the impact of this extreme weather on the natural gas market was well known.
6		The utilities failure to act upon their knowledge on February 16 is especially
7		egregious.
8	O110 .	Are you suggesting that the CenterPoint and MERC's curtailment actions
	-	
9	110	m February 13-16 were prudent?
10	A110.	Absolutely not.
		VII. <u>Peaker Plant Dispatch</u>
11	Q111.	What are natural gas peaking facilities?
12	A111.	Natural gas peaking facilities are supply-side resources that use liquified natural
13		gas (LNG), compressed natural gas (CNG), or propane to meet customer demand.
14		Peaking facilities come in a variety of sizes and have different use cases. Some
15		LNG facilities can hold millions of Dth of gas, while some CNG facilities hold as
16		little as 100 Dth. ¹⁶² In general, large, or small, peaking facilities are relatively
17		expensive and are one of the last resources to be dispatched. Utilities often refer

¹⁶² For instance, mobile CNG trucks hold about 100Dth of gas and can be dispatched to directly inject gas into a segment of the distribution system that has low pressure. See Northwest Natural Gas Integrated Resource Plan, page. 6.44.

2

to these plants as "peak shaving" facilities as they are often built as a substitute for procuring additional pipeline capacity.

Q112. What are the uses of peaking facilities? 3

There are four primary uses of peaking facilities. First, peaking facilities supply 4 A112. 5 fuel to customers as a supplement to pipeline capacity as the utility approaches design day conditions. A utility's peak demand is generally a relatively short 6 7 period of time (often just a few hours) during the year. Rather than building, or 8 buying, incremental distribution or transportation pipeline capacity, the utility can 9 build or contract with peaking facilities to meet its peak needs, thus ensuring that 10 the utility has planned for sufficient capacity to meet peak demand.

The second use is to quickly balance the distribution system if supply and demand 11 12 are out of sync. Unlike the electric industry in which the fuel (electrons) moves at 13 the speed of light, natural gas is transported relatively slowly. If gas demand is higher than anticipated during the day, a utility could dispatch a storage or a 14 15 peaking facility to meet that need, depending on the circumstances. Third, peaking facilities are used to meet local reliability needs. Utilities will 16 17 often site their peaking facilities to meet a reliability need in part of their 18 distribution system in lieu of building additional pipeline capacity to the area. As CenterPoint Witness Heer testifies, a utility may dispatch a propane peaking 19 20 facility to maintain pressure in an area of its distribution system even if it does not need the gas.¹⁶³

¹⁶³ Heer Direct, p. 6, line 10-11.

2

14

15

16

17

Finally, peaking facilities can be economically dispatched during periods of high prices.

Q113. Xcel and CenterPoint testify that peaking resources are used for reliability and capacity purposes only, and that they do not dispatch based on price. Why do you say that a peaking facility can be dispatched for economic reasons?

- 6 A113. There is no legal obstacle for using a peaking facility to reduce costs to
- 7 customers, and it certainly is technically possible. Utilities build and operate LNG
- 8 and propane facilities as a resource to supply system load, and other utilities will
- 9 dispatch peaking facilities when the cost of natural gas is high.¹⁶⁴ Although a
- 10 peaking facility has a relatively high cost of gas, this is a known price, unlike
- 11 daily spot purchases, which is especially important during periods of uncertainty.
- 12 By February 15, CenterPoint was already forecasting incremental costs of nearly
- 13 \$500 million for Minnesota.¹⁶⁵ Even if CenterPoint had never used peaking

facilities (or curtailment, for that matter) to respond to pricing events, there is no

- better time than when CenterPoint is forecasting that it will incur an additional
 - \$480 million amidst a global pandemic to call upon its peaking resources for gas
 - day February 17.

¹⁶⁴ Watson, Aurora, STAFF REPORT ON THE BALTIMORE GAS AND ELECTRIC COMPANY'S LNG AND PROPANE FACILITIES, Maryland Public Service Commission. October 2, 2000.; MERC provided this reference to support this reference to support a position in Docket G011/GP-15-895, In the Matter of the Petition of Minnesota Energy Resources Corporation for Evaluation and Approval of Rider Recovery for its Rochester Natural Gas Extension Project Docket No.; and

https://www.mass.gov/doc/hopkington-lng-corp-dba-eversource-energy-v-board-of-assessors-of-the-town-of-hopkington-june-21-2021/download

¹⁶⁵ CenterPoint Energy, HCTS Response to CUB IR #19, p. 183 (attached as Exhibit___(BC-D), Schedule 33), MPUC Docket No. G008/M-21-138, OAH Docket No. 71-2500-37763.

1	Q114.	Do CenterPoint, MERC, and Xcel have peaking facilities?
2	A114.	MERC does not have peaking facilities. CenterPoint and Xcel have peaking
3		facilities, however, Xcel's plants were offline at the time of the Event.
		a. CenterPoint
4	Q115.	Please describe CenterPoint's peaking facilities.
5	A115.	CenterPoint has one LNG plant and eight air propane plants. ¹⁶⁶ CenterPoint's
6		LNG facility has a storage capacity of 1,000,000 Dth, a liquefaction (injection)
7		rate of 5,000 Dth/day, and vaporization (dispatch) rate of 72,000 Dth/day. The
8		eight propane facilities collectively hold 980,000 Dth of gas and can dispatch
9		149,000 Dth/day. ¹⁶⁷
10	Q116.	Did CenterPoint dispatch its peaking facilities during the Event?
11	A116.	CenterPoint minimally dispatched its peaking facilities during the Event. Witness
12		Heer testified that the Company only dispatched its peaking facilities to ensure
13		reliability and not to reduce the costs of the natural gas to customers. ¹⁶⁸
14	Q117.	Witness Heer testifies that peaking facilities are not designed to address
15	ma	rket pricing events. ¹⁶⁹ Do you agree?
16	A117.	Witness Heer is over-simplifying the issue and suggesting that the plants are
17		incapable of being dispatched during a pricing event. ¹⁷⁰ Witness Heer testified

¹⁶⁶ Heer Direct, p.20-21, lines 11-6.
¹⁶⁷ Heer Direct p. 23, lines 2-6.
¹⁶⁸ Heer Direct, p. 33, lines 13-17.
¹⁶⁹ Heer Direct, p.33, lines 13-14.
¹⁷⁰ Heer Direct p. 33, lines 13-23.

1	that the peak shaving plants have not been designed or planned for pricing events,
2	but rather are located to ensure reliability and flexibility. Witness Heer portrays
3	the situation as if maintaining reliability and responding to price signals are
4	always two mutually exclusive actions.
5	A utility should be sufficiently competent to keep multiple objectives in mind
6	when optimizing the resources it has available to meet the circumstances of an
7	event – particularly when optimizing these resources is in the interest of
8	ratepayers who have paid for them. Just because a resource was built with one
9	primary purpose in mind does not mean that it cannot be deployed for other
10	purposes if the circumstances are warranted. There are costs to using a peaking
11	facility (e.g., fuel, fixed O&M, variable O&M), and the utility should be
12	cognizant of those costs and make informed decisions about when to deploy the
13	resources, but not dispatching a natural gas peaking facility that could save
14	customers millions of dollars because "the peak shaving plants have not been
15	designed or planned to address pricing events" ¹⁷¹ is unreasonable and
16	demonstrates an indifference to customer impacts.
17	Furthermore, Heer does not support the argument that the peaking facilities
18	cannot be dispatched to address pricing events. The Witness does not explain why
19	the utility could or should not use a peaking facility for economic dispatch.
20	Witness Heer simply states it as a fact and moves on. ¹⁷²

¹⁷¹Heer Direct, p. 33, lines 13-14.¹⁷² Heer Direct, p. 33, lines 13-23.

1	Q118.	Are Witness Heer's comments consistent with CenterPoint's earlier
2	con	nments on the benefit of peaking facilities to a diversified portfolio?
3	A118.	No. In its April 9, 2021, comments to the Commission, CenterPoint wrote that
4		"the Company uses a diversified gas supply portfolio consisting of a combination
5		of baseload supplies, call options, daily spot market purchases, storage, and
6		peaking supplies which are designed to maintain reliability, while balancing price
7		protection, stability of gas supply costs billed to customers, and reasonable
8		prices." ¹⁷³ Witness Heer is only focusing on the peaking facilities role in
9		maintaining reliability and not recognizing that the peaking facilities, as part of a
10		portfolio, also help balance price protection during a price spike where prices
11		greatly exceeded the cost of the peaking dispatch. Again, CenterPoint knew that
12		prices were at \$15/Dth when it developed its supply plan for the weekend, that the
13		cost of index gas already far exceeded the cost of its peaking facilities, and that
14		the worst of the storm had yet to occur. There was no logical scenario where the
15		price of index gas would have gone down over the weekend.
16	0119.	When developing its supply plan for the weekend on February 12, did the
17		mpany investigate meeting demand with its peaking facilities?
17	Col	inpany investigate meeting demand with its peaking facilities:
18	A119.	Yes. In a February 12 exchange with a third party, a CenterPoint representative
19		appears to have refused a gas supply purchase, reasoning that the Company was
20		going to "look at LNG and propane." ¹⁷⁴

¹⁷³ CenterPoint Energy, Report on Gas Cost Investigation, Docket No. G-999/CI-21-135/21-138, p. 3 (April 9, 2021).

¹⁷⁴ Office of the Attorney General, Docket No. G-999/CI-21-135/21-138/21-235, p. 46 (July 6, 2021).

1	Q120.	Witness Heer testified that the utility must reserve peak shaving supply to
2	add	lress the possibility of severe cold lack of sufficient supply in the future. Do
3	you	agree?
4	A120.	Conceptually, yes, but CenterPoint had near full capacity inventory going into the
5		storm. In fact, I am unaware of any winter in which the Company has come even
6		remotely close to depleting its peaking resources. Of course, it would be
7		imprudent for a utility to completely deplete their peaking resources in responding
8		to the Event, however, that was not the circumstance that CenterPoint was facing.
9		As of Friday, February 12, CenterPoint had an LNG peaking inventory of 948,700
10		Dth and a propane peaking inventory of 751,200 Dth, or 95 percent and 70
11		percent of annual capacity, respectively. ¹⁷⁵ Even if the utility had dispatched the
12		maximum daily throughput of 72,000 Dth/day from its LNG facility throughout
13		the duration of the Event, the Company would still have been left with 516,700
14		Dth, or 52 percent of its maximum capacity.
15		On the other hand, had CenterPoint fully dispatched its 8 propane facilities at its
16		maximum daily throughput of 149,000 Dth then it would have depleted its
17		propane position entirely by Tuesday, February 16. That would not have been a
18		reasonable course of action, but CenterPoint could have dispatched a reasonable
19		amount of propane that could have made a material difference to customers. The
20		Company's refusal to dispatch any of its peaking facilities to reduce costs for
21		customers was unreasonable.

¹⁷⁵ CenterPoint Energy, Public Response to DOC IR #006 (attached as Exhibit___(BC-D), Schedule 35), MPUC Docket No. G-999/CI-21-135.

1		Fundamentally, I disagree with Mr. Heer's insinuation that dispatching some
2		amount of the peaking facilities to reduce costs to customers would put
3		CenterPoint in a position of being unable to meet intraday requirements
4		throughout the rest of the heating season.
5	Q121.	Did the Department of Commerce provide analysis on the likelihood of
6	des	ign day conditions occurring after President's Day weekend? If yes, what were
7	the	results?
8	A121.	In its May 10 comments before the Commission, the Department wrote that, in a
9		typical year, the President's Day weekend represents the last time that near
10		design-day conditions are likely to occur within the winter planning year. ¹⁷⁶ In its
11		review of historical data over the period of the last half of February, March, and
12		April from 1900 to 2021, Commerce had found only 144 instances of daily
13		average temperatures at or below 0F, or 65 HDD, which translates into
14		approximately 1.3 percent of all days. Sixty-five of those days occurred before
15		February 19, meaning there have only been 79 instances from mid- February
16		through April over the past 121 years that have been below 0F.
17	Q122.	You mentioned that CenterPoint has not come close to depleting its peaking
18	faci	ilities during the course of a winter. Can you expand upon your evidence?

¹⁷⁶ Department of Commerce Comments, Docket No. G-999/CI-21-135/21-138, p.28, (May 10, 2021).

 dispatched its LNG and propane facilities since 2010.¹⁷⁷ In short, CenterPoint seldomly uses its LNG and propane facilities, and rarely at all after March 1. Since 2010, CenterPoint's maximum annual dispatch was 237,000 Dth in 2014 	4,
4 Since 2010, CenterPoint's maximum annual dispatch was 237,000 Dth in 2014	
5 which is less than one quarter the LNG's annual capacity of 1,000,000 Dth. ¹⁷⁸	
6 Since 2010, CenterPoint had only called upon its LNG facility 9 times after	
7 February 14, and 5 times after March 1.	
8 Regarding its propane facilities, CenterPoint's highest utilization in a year sine	ce
9 2010 was 65,309 Dth, or less than 7 percent of its annual inventory. ¹⁷⁹ The	
10 Company had only dispatched 11,000 Dth of gas from its propane facilities af	ter
11February 14 and 6,500 Dth after March 1.	
12 Simply put, CenterPoint's peaking facilities are seldomly used and the Compa	ny
13 was in no danger of exhausting its peaking supply during the Event if it made	
14 appropriate dispatch decisions to reduce cost to customers.	
15 Moreover, CenterPoint did not include any analysis on how it determined the	
16 appropriate amount of peaking storage available temporally throughout the wi	nter
17 season, which is critical to determining the reasonableness of this asset's	
18 utilization.	

¹⁷⁷ CenterPoint Energy, Response to CUB IR #25 (attached as Exhibit___(BC-D), Schedule 36), MPUC Docket No. G008/M-21-138, OAH Docket No. 71-2500-37763.
¹⁷⁸ *Ibid.*¹⁷⁹ *Ibid.*

1	Q123.	How much gas did CenterPoint dispatch from its LNG and propane facilities
2	dur	ring the Event?
3	A123.	Very little. As stated earlier, as of February 12, CenterPoint's propane peaking
4		facilities had a combined inventory of 751,000 Dth and the LNG facility had
5		946,981 Dth in storage. CenterPoint dispatched only 48,979 Dth of LNG and
6		8,478 Dth of propane over the five-day Event. ¹⁸⁰
7		

8 Table 13: CenterPoint's Peaking Facilities Use During the Event

Date	LNG inventory (Dth)	LNG called (Dth)	Propane Inventory (Dth)	Propane Called (Dth)
Max Daily		72,000		149,000
2/13/2021	946,752	229	748,864	1,397
2/14/2021	905,141	41,611	741,863	7,001
2/15/2021	898,783	6,358	741,863	0
2/16/2021	898,350	433	741,863	0
Sub-total		48,631		8,398
2/17/2021	898,002	348	741,783	80
Total		48,979		8,478

10 Q124. Are you suggesting that CenterPoint should have dispatched all of its

11

13

peaking facilities during the Event?

12 A124. No. Just because design day conditions don't often occur after President's Day

weekend, that does not mean that this is impossible. The utility must be prepared

¹⁸⁰ See page 82 of my testimony.

1	to respond to events into March, as well as other reliability issues. The propane
2	facilities can be used for maintaining system pressure even if the supply is not
3	necessarily needed, as Witness Heer testified. ¹⁸¹ It wouldn't be appropriate to
4	deplete the propane facilities to a point that the utility loses these crucial
5	resources.
6	However, the Company has not demonstrated that it was in any danger of
7	completely depleting its peaking facilities or that it could not have made modest
8	to aggressive dispatches from its facilities to relieve some costs to customers.
9	CenterPoint should have been trying to balance its two objectives, risk and cost,
10	but unreasonably held back on dispatching its peaking facilities thus exposing
11	ratepayers to exorbitant costs.

b. Xcel

12 Q125. Let's turn now to Xcel. Please describe Xcel's peaking facilities.

A125. As described by Witness Yehle, Xcel has three peaking plants: one LNG facility
and two propane air plants.¹⁸² The Wescott LNG plant has a maximum storage
capacity of 2,145,00 Dth and a maximum daily withdrawal of 156,00 Dth. The
Sibley and Maplewood propane facilities have maximum storage capacity of
114,000 Dth and 124,000 Dth, respectively, and daily withdrawal capacities of
46,000 and 44,000 Dth, respectively.

¹⁸¹ Heer Direct, p.34, lines 8-9.

¹⁸² Yehle Direct, p. 3, lines 1-3.

1	Q126.	You said that Xcel's peaking facilities were offline during the Event. Can you
2	plea	ase describe why?
3	A126.	Witness Yehle's testimony provides a longer description of this issue which I will
4		briefly recap here. Witness Yehle testified that in either November or December
5		2020 the Company began "testing certain components of the vaporization
6		equipment at Wescott in preparation for winter operations." ¹⁸³ On December 31,
7		2020, as Xcel began testing the vaporization process, some vaporization
8		equipment exceeded design pressure, causing an unplanned release of gas. The
9		same event happened again on January 4, 2021. After the unplanned release at
10		Wescott, Yehle testified that the Company then tested the vaporization processes
11		at the propane facilities. A root cause analysis determined that the Company
12		needed to make additional investments at each of the facilities. The Company shut
13		the units down and purchased additional upstream transportation capacity to
14		ensure the utility had adequate supply.
15	Q127.	Are you challenging Xcel's procurement of additional upstream
16	tra	nsportation capacity for the winter season?
17	A127.	I did not perform a review of the utility's upstream procurement; however, it
18		makes sense that Xcel immediately replaced its lost capacity.
19	Q128.	Are the plants back in service?
20	A128.	To the best of my knowledge the plants are still not back in service.

¹⁸³ Yehle Direct, p. 15, lines 16-18.

1	Q129.	According to Xcel, what impact did the loss of the three peaking plants have	
2	on the Event?		
3	A129.	Xcel's position is that peaking resources are capacity-only resources and their	
4		unavailability did not have an impact on customers. ¹⁸⁴	
5	Q130.	Do you agree with Xcel's assessment that the unavailability of its peakers did	
6	not	have an impact on customers?	
7	A130.	No. My reasoning is the same as I stated in regard to CenterPoint's use of peaking	
8		facilities. There are no legal or technical obstacles to using peaking resources for	
9		meeting customer demand. The price of a peaking facility, although relatively	
10		high, is known, unlike the daily spot price. This can be an advantage during a	
11		period of uncertainty. This is especially advantageous when price of a peaking	
12		facility is below the prevailing spot market price, as it was beginning on February	
13		12 and continuing through the rest of the Event. A utility should be sufficiently	
14		competent to hold multiple objectives when optimizing the resources it has at its	
15		availability to meet the circumstances of an event. Although a peaking facility	
16		may have been built primarily to displace additional pipeline, that does not	
17		preclude it from being used to reduce costs to customers during pricing events. To	
18		testify that the unavailability of the peaking facilities had no impact on customers	
19		simply ignores that the plants, if utilized appropriately, could have reduced costs	
20		to customers by tens of millions of dollars.	

¹⁸⁴ Krug Direct, p. 7, lines 14-18.

Q131.	Does Xcel usually wait until December 31 to test the vaporization equipment
at i	ts peaking facilities?
A131.	No. According to Xcel, it typically begins testing in Mid-September and will
	perform test vaporization runs by Mid-November. ¹⁸⁵ In a discovery response, the
	Company reported that vaporization testing requires temperatures under 40
	degrees. ¹⁸⁶ However, Xcel did not provide an explanation as to why it delayed its
	testing until the last day of the year, nor does it say that temperatures played a role
	in that delay. By not providing that information in its Direct Testimony, Xcel does
	not meet its burden of demonstrating its actions were prudent.
Q132.	Had Xcel started the testing the LNG facility in Mid-September, rather than
eith	ner November or December, and conducted its vaporization tests in Mid-
Nov	vember, would the plants have been online to be used during the Event?
A132.	With hindsight we now know that the LNG facility is still offline, which implies
	that it would not have made a difference as to its availability.
0133.	Has Xcel demonstrated that it acted prudently in maintaining its LNG and
_	pane facilities prior to pulling them offline at the beginning of January 2021?
A133.	No, it has not. Witness Yehle implies that the facilities were adequately
	maintained because the plants are subject to regulations by state and federal
	agencies, and the Company made \$3.9 million in capital additions in the past
	at i A131. Q132. eith Nov A132. Q133.

 ¹⁸⁵ Xcel Energy, Response to CUB IR #17 (attached as Exhibit___(BC-D), Schedule 37), MPUC Docket No. G002/CI-21-610, OAH Docket No. 7-2500-37763.
 ¹⁸⁶ Ibid.

1	three years. ¹⁸⁷ First, the utility is responsible for prudently maintaining its peaking
2	facilities – not a government oversight agency. Further, even if a governmental
3	agency has not found a violation of one of its rules during an inspection, this is
4	not the same as a finding that the utility has properly maintained its facility for
5	use during the winter. Moreover, the Company has been fined as recently as 2019
6	for failing inspections at all three facilities. ¹⁸⁸ Ultimately, Xcel is responsible for
7	demonstrating that the LNG plant's unavailability due to a safety issue was
8	outside of its control, and it has not done so in this docket.
9	Second, that Xcel has made \$3.9 million in capital additions in recent years is also
10	not sufficient support that the Company has adequately maintained its facilities.
11	The Company should have provided context for the additions at the plants. For
12	example, useful information would have included records for schedule for
13	seasonal, annual, and major maintenance project as well as estimated costs, or a
14	past Company study that identified necessary projects and estimated budgets.
15	Given that the peaking facilities were pulled offline at the beginning of the winter
16	season, the level of scrutiny should be relatively high. Yet the Company has not
17	provided any demonstration that its \$3.9 million in capital additions were
18	sufficient.
19	Finally, Witness Yehle glosses over the fact that Xcel voluntarily took the
20	propane facilities offline.

¹⁸⁷ Yehle Direct, p. 8, lines 12-25, p. 9-12.¹⁸⁸ Yehle Direct, p. 14, lines 4-10.

Q134. Why did Xcel take the propane facilities, Sibley and Maplewood, offline as 1 2 well? A134. Witness Yehle's testimony is unclear. Yehle testifies that after the releases at 3 Wescott, and instead of continuing to prepare the plants for the season, Xcel 4 5 investigated Sibley and Maplewood as well. Through its investigation, Xcel discovered that "additional investments need to be made at Sibley and 6 7 Maplewood, which also were nearing the end of their life expectancies, so we can safely operate them for many more years."¹⁸⁹ Yehle did not testify what additional 8 9 investments needed to be made nor did Yehle explain why the Company did not 10 make those investments in the past. 11 Q135. Why were Sibley and Maplewood not able to be available to customers? 12 A135. I do not know. Xcel did not provide additional information in its testimony. The 13 Company did not provide any discussion or analysis as to what additional investments needed to be made, if the plants or personnel were at risk when it 14 15 made its decision, an estimate for the time to repair, a cost estimate, a cost-benefit analysis of alternative resources to replace the facilities, or any other critical 16 information that is needed to determine if the Company took prudent actions. 17 18 Q136. In regards to its peaking facilities, were Xcel's actions prudent? 19 A136. With regards to the LNG facility, I am uncertain as to whether Xcel's actions 20 were prudent. I am not questioning whether it was prudent to take the LNG

¹⁸⁹ Yehle Direct, p. 18-19, lines 9-2.

1	facility offline once the incidents occurred on December 31, 2020, and January 4,
2	2021, but it is true that this plant was offline during the Event and could have
3	been used to mitigate the extraordinary costs to customers. Xcel needs to make a
4	convincing case that it had properly maintained the facility and took all
5	reasonable actions to ensure that the facility was available for customers. Based
6	on the information presented in Direct testimony, Xcel's has not made the case
7	that its maintenance was regular and up-to-date and that the timing of its testing
8	was reasonable and prudent.
9	I am confident that Xcel has not made a convincing case as to why it pulled its
10	propane facilities offline at the same time as the LNG facility. The Company's
11	testimony is inadequate. Xcel does not even present the most basic information,
12	such as, what were the "additional investments" that the Company needed to
13	make at Sibley and Maplewood, much less cost estimates or alternatives
14	considered. ¹⁹⁰ Xcel does not even indicate if the additional investments were
15	necessary to keep the plants safe.
16	In short, Xcel has not met its burden of proof that it properly managed and
17	maintained its peaking facilities.
	c. Peaker Dispatch Disallowance Range Recommendations

Q137. How would have a reasonable utility have utilized its peaking facilities?

¹⁹⁰ Yehle Direct, p. 18-19, lines 23-2.

1	A137.	As my colleague Witness Nelson and I have repeatedly testified, a reasonable
2		utility balances the risks and cost to customers. The specific amount the utility
3		should have dispatched from its facilities are specific to that utility's particular
4		situation. Thus, the utility should be considering its relative position. Pertinent
5		questions include the inventory level of its facilities, the probability of a design
6		day event past President's Day weekend, the specific geographic needs of its
7		service territory, and a forecast of how long it may need to mitigate costs.
8		Undoubtedly, there are other considerations as well.
9		What I can firmly say is that a utility should absolutely be considering the
10		economic dispatch of all its supply-side resource when it is to the benefit of
11		customers and can be done so while maintaining reliability. CenterPoint and
12		Xcel's non-consideration of economic dispatch is imprudent. Furthermore, Xcel
13		has not sufficiently demonstrated that it properly maintained its LNG facilities or
14		adequately explained why it voluntarily pulled its propane facilities offline.
15	Q138.	How did you develop a recommended range for disallowances?
16	A138.	For both utilities, I create multiple, reasonable, counterfactual scenarios. I can
17		imagine an argument for a relatively conservative approach, as well as an
18		aggressive set of actions, each of which could be deemed prudent by the
19		Commission. As such, I tried to outline what I thought fell within the bounds of
20		reason.
21		For the LNG facilities, because of their size and location along the transportation
22		pipeline, I recommend that the utilities should have been expected to run these

1		facilities at or near their maximum daily capacity as there is no indication in the
2		weather forecasts that the utilities would have had to rely on their LNG plants for
3		a period that could have come close to depleting the resource.
4		I would recommend a more conservative approach for the propane facilities.
5		These facilities are considerably smaller with a higher maximum daily
6		vaporization relative to the total inventory. It is conceivable that running those
7		plants at maximum daily levels would quickly exhaust their supply. Furthermore,
8		propane facilities are usually located in the distribution system and may be
9		necessary to maintain pressure in certain locales. For Xcel, I also created a
10		counterfactual where just the propane facilities were available to the Company.
11	O139.	Please describe your considerations when proposing a range of disallowances
	Ľ	
12		CenterPoint on the issue of utilizing its peaking resources.
12 13	for	
	for	CenterPoint on the issue of utilizing its peaking resources.
13	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the
13 14	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the LNG facility dispatched at 50 percent of maximum daily throughput and the
13 14 15	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the LNG facility dispatched at 50 percent of maximum daily throughput and the propane facilities dispatched at 25 percent. I also created more aggressive
13 14 15 16	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the LNG facility dispatched at 50 percent of maximum daily throughput and the propane facilities dispatched at 25 percent. I also created more aggressive approach that assumed the LNG facility dispatched at 100 percent of maximum
13 14 15 16 17	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the LNG facility dispatched at 50 percent of maximum daily throughput and the propane facilities dispatched at 25 percent. I also created more aggressive approach that assumed the LNG facility dispatched at 100 percent of maximum daily throughout and 50 percent for the propane facilities. Both scenarios would
13 14 15 16 17 18	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the LNG facility dispatched at 50 percent of maximum daily throughput and the propane facilities dispatched at 25 percent. I also created more aggressive approach that assumed the LNG facility dispatched at 100 percent of maximum daily throughout and 50 percent for the propane facilities. Both scenarios would have left the utility with more than sufficient inventory to respond to intra-day gas
13 14 15 16 17 18 19	for	CenterPoint on the issue of utilizing its peaking resources. I created two counterfactuals; a relatively conservative approach that assumed the LNG facility dispatched at 50 percent of maximum daily throughput and the propane facilities dispatched at 25 percent. I also created more aggressive approach that assumed the LNG facility dispatched at 100 percent of maximum daily throughout and 50 percent for the propane facilities. Both scenarios would have left the utility with more than sufficient inventory to respond to intra-day gas needs and deliver during future events later in the winter.

1	Q140.	What is your recommended range of disallowance for CenterPoint on the
2	issu	e of utilizing its peaking facilities?
3	A140.	For the utilization of peaking facilities, I am recommending a range of \$12.2
4		million to \$122.6 million for CenterPoint. The bottom of my range begins with
5		the disallowance for February 17 if CenterPoint had dispatched its LNG and
6		propane facilities at 50 and 25 percent, respectively. The top of my range is the
7		disallowance based on CenterPoint dispatching its LNG and propane facilities at
8		100 and 50 percent, respectively, for the entirety of the Event.

9 [BEGIN HIGHLY CONFIDENTIAL TRADE SECRET]

10 Table 14: CenterPoint Peaking Disallowance Recommendation, LNG 50% and Propane 25%

			Date			Total
	2/13/2021	2/14/2021	2/15/2021	2/16/2021	2/17/2021	10181
Avoided						
Spot						
Purchases						
Due to						
LNG						
Savings						
Due to						
Avoided						
Spot						
Purchases						
Avoided						
Call						
Options						
Due to						
LNG						
Savings						
Due to						
Avoided						
Call						
Options						
Total						
LNG						
Savings						

Cost of				
LNG				
Net				
Savings				
Due to				
LNG				
Avoided				
Spot				
Purchases				
Due to				
Propane				
Savings				
Due to				
Avoided				
Spot				
Purchases				
Avoided				
Call				
Options				
Due to				
Propane				
Savings				
Due to				
Avoided				
Call				
Options				
Total				
Propane				
Savings				
Cost of				
Propane				
Net				
Savings				
Due to				
Propane				
Total				
Savings				
Due to			\$12,214,984	\$56,809,146
LNG and			ψ1 <i>4</i> , 214 ,704	φ 30,007,140
Propane				

2 Table 15: CenterPoint Peaking Disallowance Range: LNG 100% and Propane 50%

	Date 7					
2/13/2021	2/14/2021	2/15/2021	2/16/2021	2/17/2021		

Avoided	1	l	l	
Spot				
Purchases				
Due to				
LNG				
Savings				
Due to				
Avoided				
Spot				
Purchases				
Avoided				
Call				
Options				
Due to				
LNG Sovings				
Savings Due to				
Avoided				
Call				
Options				
Total				
LNG				
Savings				
Cost of				
LNG				
Net				
Savings				
Due to				
LNG				
Avoided Spot				
Purchases				
Due to				
Propane				
Savings				
Due to				
Avoided				
Spot				
Purchases				
Avoided				
Call				
Options				
Due to				
Propane				
Savings				
Due to				
Avoided				

Call Options				
Total Propane Savings				
Cost of Propane				
Net Savings Due to Propane				
Total Savings Due to LNG and Propane			\$24,923,313	\$122,653,731

1 [END HIGHLY CONFIDENTIAL TRADE SECRET]

2	Q141. Please describe your considerations when proposing a range of disallowances
3	for Xcel on the issue of utilizing its peaking resources.
4	A141. I created three counterfactuals.
5	1. A relatively conservative approach that assumed the LNG facility
6	dispatched at 50 percent of maximum daily throughput and the propane
7	facilities dispatched at 25 percent.
8	2. A more aggressive approach that assumed the LNG facility dispatched at
9	100 percent of maximum daily throughput and 50 percent for the
10	propane facilities.
11	3. An approach in which the propane facilities were available, and the
12	utility used 50 percent of their daily maximum, but the LNG facility was
13	not available.
14	These scenarios would have left the utility with sufficient inventory to respond to
15	intra-day gas needs and deliver during future events later in the winter.
16	Q142. What is your recommended range of disallowance for Xcel on the issue of
17	utilizing its peaking facilities?
18	For the utilization of peaking facilities, I am recommending a range of \$2.5
19	million to \$115.8 million for Xcel. The bottom of my range begins with the
20	disallowance for February 17 if Xcel had only its propane facilities online and
21	injected 50 percent of its daily maximum on that day. The top of my range is the
22	disallowance based on Xcel dispatching its LNG and propane facilities at 100 and

1	50 percent, respectively, for the entirety of the Event. As with CenterPoint, the
2	development of the parameters for the counterfactual were necessary due to the
3	Company not providing sufficient information in direct testimony on how peaking
4	facilities can be reasonably operated.

1 [BEGIN HIGHLY CONFIDENTIAL TRADE SECRET]

2 *Table 16: Xcel Peaking Disallowance, Counterfactual Propane only at 50 percent*

Date	Avoided Spot Purchases Due to Peaking Plant Dispatch	Savings Due to Avoided Spot Purchases	Cost of LNG	Net Savings Due to LNG	Avoided Spot Purchases Due to Propane	Savings Due to Avoided Spot Purchases	Cost of Propane	Net Savings Due to Propane	Total Savings Due to LNG and Propane
2/13/21									
2/14/21									
2/15/21									
2/16/21									
2/17/21									\$2,488,873
Total									\$14,311,286

3

4 Table 17: Xcel Peaking Disallowance, Counterfactual LNG at 50% and Propane at 25%

Date	Avoided Spot Purchases	Savings Due to Avoided	Cost of LNG	Net Savings	Avoided Spot Purchases	Savings Due to Avoided	Cost of Propane	Net Savings	Total Savings Due to
------	------------------------------	------------------------------	----------------	----------------	------------------------------	------------------------------	--------------------	----------------	----------------------------

OAH Docket No. 71-2500-37763 Direct Testimony of Bradley Cebulko December 22, 2021 Page 105 of 107

	Due to Peaking Plant Dispatch	Spot Purchases	Due to LNG	Due to Propane	Spot Purchases	Due to Propane	LNG and Propane
2/13/21							
2/14/21							
2/15/21							
2/16/21							
2/17/21							\$10,068,623
Total							\$57,895,657

1

2 Table 18: Xcel Disallowance, Counterfactual LNG at 100% and Propane at 50%

Date	Avoided Spot Purchases Due to Peaking Plant Dispatch	Savings Due to Avoided Spot Purchases	Cost of LNG	Net Savings Due to LNG	Avoided Spot Purchases Due to Propane	Savings Due to Avoided Spot Purchases	Cost of Propane	Net Savings Due to Propane	Total Savings Due to LNG and Propane
2/13/21									
2/14/21									

OAH Docket No. 71-2500-37763 Direct Testimony of Bradley Cebulko December 22, 2021 Page 106 of 107

2/15/21					
2/16/21					
2/17/21					\$20,137,247
Total					\$115,791,314

1 [END HIGHLY CONFIDENTIAL TRADE SECRET]

OAH Docket No. 71-2500-37763 Direct Testimony of Bradley Cebulko December 22, 2021 Page 107 of 107

- 1 Q143. Does this conclude your testimony?
- 2 **A142.** Yes.