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Dear Dr. Haar: 
 
Attached are the Supplemental Comments of the Minnesota Department of Commerce, Division 
of Energy Resources (Department) in the following matter: 
 

In the Matter of Establishing a Distributed Solar Value Methodology under Minn. Stat.  
§216B.164, subds.10 (e) and (f). 

 
The Department is filing these comments at the Minnesota Public Utilities Commission’s 
(Commission) request.  The comments expand on the points the Department already made in 
reply comments in this docket.  The Department continues to recommend that the Commission 
approve the methodology proposed, as modified by the Department’s February 20, 2014 
comments, and is available to answer any questions the Commission may have. 
 
Sincerely, 
 
 
 
/s/ HOLLY LAHD 
Rates Analyst 
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BEFORE THE MINNESOTA PUBLIC UTILITIES COMMISSION 
 

SUPPLEMENTAL COMMENTS OF THE 
MINNESOTA DEPARTMENT OF COMMERCE 

DIVISION OF ENERGY RESOURCES 
 

DOCKET NO. E999/M-14-65 
 
 
 
I. INTRODUCTION 
 
At the Commission’s request the Department is filing this explanation of the use of the federal 
social cost of carbon in the proposed Value of Solar (VOS) methodology.  This filing includes 
information on why the federal social cost of carbon is more appropriate than the Commission’s 
carbon dioxide (CO2) externality value and regulatory compliance cost values solely in this 
particular Docket No. E999/M-14-65 at this time.  The Department’s comments on these values 
in this docket do not attempt to prejudge the results of the stakeholder group scoping process 
ordered by the Commission in environmental externalities Docket No. E999/CI-00-1636. 
 
 
II. FEDERAL SOCIAL COST OF CARBON 
 
A. OVERVIEW OF THE SOCIAL COST OF CARBON 

 
The proposed Value of Solar (VOS) methodology uses the U.S. Environmental Protection 
Agency’s (EPA) Social Cost of Carbon values (at a 3 percent discount factor) to calculate the 
environmental component of the VOS rate.  The Social Cost of Carbon values were developed 
by the U.S. Environmental Protection Agency (EPA) and other federal agencies, and the values 
are used in federal rulemakings to estimate the climate benefits. 
 
The EPA’s website describes the Social Cost of Carbon (SCC) as follows: 
 

The SCC is meant to be a comprehensive estimate of climate 
change damages and includes, but is not limited to, changes in net 
agricultural productivity, human health, and property damages   
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from increased flood risk.  However, given current modeling and 
data limitations, it does not include all important damages.  As 
noted by the [Intergovernmental Panel on Climate Change] IPCC 
Fourth Assessment Report, it is “very likely that [SCC] 
underestimates” the damages.  The models used to develop SCC 
estimates, known as integrated assessment models, do not currently 
include all of the important physical, ecological, and economic 
impacts of climate change recognized in the climate change 
literature because of a lack of precise information on the nature of 
damages and because the science incorporated into these models 
naturally lags behind the most recent research.  Nonetheless, the 
SCC is a useful measure to assess the benefits of CO2 reductions.1 

 
The values for the social cost of carbon estimated at a point in time also estimate future 
emissions to account for the expected increases in damages due to higher concentrations of CO2 
in the atmosphere.  For example, a metric ton of CO2 emitted in 2014 has a social cost of $40.61 
in current dollars, and a metric ton emitted in 2038 (25 years later) is valued at $66.67 (in 2014 
dollars). 

 
B. DEVELOPMENT PROCESS 
 
The federal social cost of carbon was developed through a number of federal agency actions.  A 
federal interagency working group was convened by the Council of Economic Advisers and the 
Office of Management and Budget in 2009-2010 to design an SCC modeling exercise and 
develop estimates for use in rulemakings.  The interagency group was comprised of scientific 
and economic experts from various federal agencies.  The US EPA and Department of Energy 
hosted a series of workshops in 2010 and 2011 to inform the social cost of carbon.  Information 
from these workshops has been available on the EPA’s website since 2010. 
 
The federal government committed to updating the SCC values as climate science is updated.  In 
May 2013, the interagency group released revised SCC values.  The May 2013 estimates reflect 
values that are similar to those used by other national governments, international institutions, and 
major corporations.  Those estimates have been available for public comment in several 
proposed rulemakings, and agencies have already received comments that are under review.  
  

1 U.S. Interagency Working Group on Social Cost of Carbon (2013).  Social Cost of Carbon. 
http://www.epa.gov/climatechange/EPAactivities/economics/scc.html.  
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C. CLIMATE INTEGRATED ASSESSMENT MODELS 
 
The federal interagency work group relied on three integrated assessment models that are 
commonly used to estimate the SCC.  These models are frequently cited in the peer-reviewed 
literature and used in the IPCC assessment.  These models are useful because they combine 
climate processes, economic growth, and feedbacks between the climate and the global economy 
into a single modeling framework.2 
 
Each model takes a slightly different approach to model how changes in emissions result in 
changes in economic damages.  In the Policy Analysis of the Greenhouse Effect (PAGE) model, 
for example, the damages in each period are calculated as a fraction of gross domestic product, 
depending on the temperature in that period relative to the preindustrial average temperature in 
each region.  In the Climate Framework for Uncertainty, Negotiation and Distribution (FUND) 
model, damages in each period also depend on the rate of temperature change from the prior 
period.  In the Dynamic Integrated Climate-Economy (DICE) model, temperature affects both 
consumption and investment.  More information on these models can be found in the social cost 
of carbon’s technical support document.  The original 2010 technical support document and the 
2013 updated document are attached to these supplemental comments. 
 
Unlike the Minnesota externality values, the social cost of carbon values estimate damages of 
future releases of CO2 emissions, accounting for the estimated changes in atmospheric 
concentrations of CO2 by later dates.  As such, CO2 emissions in future years are assigned higher 
damage costs than CO2 emissions in the near term because the marginal addition of later CO2 
emissions is anticipated to increase overall damages at a higher rate than near-term CO2 
emissions. 
 
D. THE IMPORTANCE OF MARGINAL ANALYSIS 
 
The SCC Interagency Working Group describes the social cost of carbon as “an estimate of the 
economic damages associated with a small increase in carbon dioxide (CO2) emissions, 
conventionally one metric ton, in a given year.  This dollar figure also represents the value of 
damages avoided for a small emission reduction (i.e., the benefit of a CO2 reduction).”3  In other 
words, the social cost of carbon is used to estimate the value to society of marginal reductions in 
carbon emissions.  
 
Valuing the marginal reductions in carbon emissions is consistent with the VOS methodology 
framework.  The VOS methodology is an analysis of the value of solar energy compared to the 
resources it is displacing on the margin.  An analysis that looked at the value of solar energy   

2 U.S. Interagency Working Group on Social Cost of Carbon (2010). Social Cost of Carbon Technical Support 
Document. http://www.epa.gov/oms/climate/regulations/scc-tsd.pdf.  
3 U.S. Interagency Working Group on Social Cost of Carbon (updated November, 2013). Social Cost of Carbon 
Technical Support  
Document.  http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-
carbon-for-regulator-impact-analysis.pdf.  
 

                                                 

http://www.epa.gov/oms/climate/regulations/scc-tsd.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
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compared to the average of generation resources in a utility’s generation portfolio would look 
very different, and would not answer the question: what is the value of solar energy compared to 
the generation it displaces?  Likewise, the marginal environmental damage reduction from the 
generation of 1 kWh of solar energy is also different than applying an average damage factor 
designed to estimate the carbon emissions damages from all generation sources across Minnesota 
and the larger region.    
 
 
III.  MINNESOTA 1995 EXTERNALITY VALUES 
 
In 1993, the Minnesota legislation directed that the Commission “to the extent practicable, 
quantify and establish a range of environmental costs associated with each method of electricity 
generation."  The law requires each utility to use the values in conjunction with other external 
factors when evaluating resource options in all proceedings before the Commission.  
 
The Commission established the environmental externality values in its January 3, 1997 Order 
Establishing Environmental Cost Values in docket no. E-999/CI-93-583.  The values are adjusted 
annually for inflation.  On June 5, 2013, the Commission published the current values ranging 
from $0.42 to $4.37 per ton of CO2.   
 
Sections of the 1997 Order’s CO2 discussion are copied below:  
 

The [Minnesota Pollution Control Agency] MPCA originally 
proposed a range of $4.28 to $28.57 per ton for CO2 emissions, 
based on the testimony of Peter Ciborowski who used a damage 
cost methodology.  In its Exceptions to the ALJ’s Report, the 
MPCA revised its proposal, recommending a range of $2.14 to 
$14.29 per ton. 
 
The ALJ recommended a range of costs for CO2 emissions of 
$0.28 to $2.92, based on Ciborowski’s lower damage function (1 
percent of global GDP) discounted at rates of 5 percent (lower end 
$0.28) to 3 percent (higher end $2.92). 
 
The Commission will adopt the range recommended by the ALJ as 
appropriate for all three scenarios: rural, fringe, and urban.  The 
Commission finds that the ALJ’s calculation is well reasoned and 
firmly based in the record. See ALJ’s Report, Findings 102 - 114.  
The Commission will update the estimates to 1995 dollars, using 
the same method as used for the other types of emissions. 
 
The environmental values for CO2 quantified in this Order follow 
MPCA witness Ciborowski’s general methodology.  First, 
Ciborowski estimated long-term global costs based on the existing 
economic literature and discounted them to current values.  Then,   
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he divided that amount by the amount of long-term CO2 emissions 
to arrive at an average cost per ton.  Ciborowski essentially 
converted published damage estimates made by economists from 
percentages of gross domestic product (GDP) into costs per ton of 
CO2. [emphasis added] 
 
Two factors account for the difference between the MPCA’s 
recommended values and those adopted by the Commission: 1) the 
estimate of damage and 2) the discount rate used to reduce the 
stream of estimated damages to present value. 
 
Estimate of Global Damage -- Ciborowski provided two damage 
figures: a “lower damage function” equal to 1 percent of global 
GDP and a “higher damage function” equal to 2 percent of global 
GDP.  The MPCA used the higher function (2 percent) in 
calculating its proposed values.  The Commission finds that the 
assumption that damages can be estimated at 2 percent of global 
GDP is factually unsupported by the record and is highly 
speculative given the available evidence.  By contrast, the 
Commission finds that Ciborowski’s “lower damage function” (1 
percent) is well supported in the record, including the studies of 
Nordhaus and Frankhauser.  The CO2 values adopted in this Order, 
therefore, are calculated using a 1 percent damage function. 
 
Discount Rate -- Once a damage stream has been estimated, it is 
necessary to select an appropriate discount factor to adjust the 
damage stream figures downward to present value.  Ciborowski 
calculated the damage estimates using discount rates of 1, 2, 3, and 
5 percent.  He proposed a discount rate of approximately 1.5 
percent based on a study performed by Cline. 
 
Although Cline maintained that low discount rates are appropriate 
when discounting across generations, the Commission agrees with 
the ALJ that there is insufficient support for that position in the 
record.  The weight of authority in the record supports a range of at 
least 3 - 5 percent for reducing future environmental damages to 
present value.  Therefore, the range of CO2 values adopted in this 
Order are calculated using 3 percent to calculate the high end 
figure and 5 percent to calculate the low end figure.  (Footnotes 
omitted) 
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IV. DIFFERENCES BETWEEN 2013 SOCIAL COST OF CARBON VALUES AND 

1995 MINNESOTA EXTERNALITY VALUES 
 
The marginal damage approach used in the social cost of carbon values is the key reason the 
Department selected the SCC as part of the environmental value component of the VOS 
methodology.  The social cost of carbon’s technical support document is clear that the damage 
values should be applied to small (marginal) changes in CO2 emissions.  In contrast, the 
Commission’s CO2 externality values are average costs per ton, as identified in the 
Commission’s 1997 Order.  The VOS methodology is built on the premise that solar energy’s 
value comes from the resource on the margin it displaces, it follows that the environmental 
components should also be valued by the pollution costs they are displacing on the margin.   
 
While both sets of values are environmental damage factors, the social cost of carbon uses three 
scientifically reviewed integrated assessment models that estimate future damages to human 
health, net agricultural productivity, property damage, and other impacts.  The Commission’s 
externality values, as described by the order copied above, are based on the assumption that GDP 
will decrease 1 percent due to climate change.  This decrease in GDP is then divided by long-
term CO2 emissions estimates to arrive at an average cost per ton.  The Commission’s approach 
was based the MPCA’s witness’s review of available science at the time of the Commission’s 
1994-1997 investigation into externality costs, but the scientific understanding of climate 
damages has increased significantly in the last 20 years.  For example, the damages from climate 
change are expected to increase as the concentration of carbon dioxide increases, which is 
reflected in the social cost of carbon but not the externality values established in the mid-1990s.  
This change in scientific understanding has led the Commission to reopen the environmental 
externality values docket.4  The Commission directed the Department and the MPCA to convene 
a stakeholder group to address the scope of the investigation.  The Department has begun work 
on that effort.   
 
The proposed VOS methodology includes an example calculation that includes the 
environmental value.  At Commission staff’s request, the Department recalculated the example’s 
environmental component value using the midpoint of the Minnesota CO2 externality value 
($2.40/ton of CO2 in 2012 dollars).  Using the Minnesota midpoint CO2 value instead of the 
social cost of carbon values decreased the example’s environmental component value by 93 
percent.  Overall, it decreased the overall VOS rate by 21 percent from $0.109/kWh to 
$0.086/kWh in 2014. 
 
  

4 Docket No. E-999/CI-00-1636 (February 10, 2014) ORDER REOPENING INVESTIGATION  
AND CONVENING STAKEHOLDER GROUP TO PROVIDE RECOMMENDATIONS FOR CONTESTED 
CASE PROCEEDING.   
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V.  MINNESOTA CARBON REGULATION PLANNING VALUES 
 
Minn. Stat. §216H.06 requires the Minnesota Public Utilities Commission (Commission) to 
update annually an estimate of the likely range of costs to utilities of future carbon dioxide 
regulation on electricity generation.  The estimate must be used in all electricity generation 
resource acquisition proceedings.  The annual updates of the estimate must be made by the 
Commission following informal proceedings conducted by the Commissioners of the DOC and 
MPCA that allow interested parties to submit comments.  
 
The current estimate was set in the Commission’s November 2, 2012 Order in Docket No. 
E999/CI-07-1199.  The Order states: 
 

1. The Commission maintains its estimate of the range of likely 
costs of CO2 regulation at between $9 and $34 per ton of CO2 
for 2012 and 2013.  

 
2. Utilities shall begin applying the above range of CO2 values in 

their resource planning as of 2017.   
 
The Commission’s costs of carbon regulation ($9-$34 dollars per ton) are estimates of expected 
costs of utilities complying with regulations pertaining to carbon dioxide; these costs are not 
environmental costs for the damages to society from carbon dioxide pollution.  The Department 
does not support the use of regulatory compliance planning costs in the VOS methodology 
because the costs do not fulfill the requirement that the VOS tariff compensate generator 
customers for “the value to the utility, its customers, and society.”  That is, even after utilities 
comply with regulations pertaining to carbon, the value of adding solar generation would be to 
avoid carbon dioxide emissions – which would be lower, but are not expected to be zero – even 
after complying with carbon regulations.  
 
The avoidance of regulatory compliance costs are a value to the utility, and to the utility’s 
customers to the extent that those costs would otherwise be included in rates.  However, the 
avoidance of regulatory costs does not compensate for the whole value of solar to society.  The 
avoidance of environmental externality damages benefit the utility and its customers through the 
avoidance of compliance costs that they would need to pay to achieve the same pollution result, 
as well as benefiting society (which include the utility’s customers) in reduced environmental 
damages they would otherwise incur.  Using the regulatory costs would turn the VOS 
methodology into a utility avoided generation cost calculation.  The statute directs the 
Department to consider the entire value of solar, not just avoided utility costs. 
 
 
VI.  RELATIONSHIP AMONG CARBON COSTS 
 
The three sets of carbon costs and values discussed in these supplemental comments fulfill 
different analysis purposes, yet are still very much related.  Table 1 below compares the sets of 
carbon costs discussed in this filing.  
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Table 1:  Carbon Cost and Values Comparison 
 

Set of Carbon Costs Type of Cost Application 
Social Cost of Carbon Marginal Damage Costs Small changes in CO2 

emissions 
Commission Externality Costs 
(Docket No. E-999/CI-93-583, 
Docket No. E.999/CI-00-1636) 

Average Damage Costs Utility’s generation mix in 
resource planning 

Commission Carbon Regulatory 
Planning Costs  
(Docket No. E999/CI-13-796, 
Docket No. E999/CI-07-1199)  

Average Utility Compliance 
Costs (apply to resource 
planning as of 2017) 

Utility’s generation mix in 
resource planning 

 
 
VII. CONCLUSIONS AND RECOMMENDATIONS 
 
The Department continues to recommend that the Commission approve the methodology as 
detailed in the filed document: Minnesota Value of Solar: Methodology, as modified by the 
Department’s February 20, 2014 comments.  The Department is available to answer any 
questions the Commission may have. 
 
 
/lt 
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Executive Summary 

Under Executive Order 12866, agencies are required, to the extent permitted by law, “to assess both the 

costs and the benefits of the intended regulation and, recognizing that some costs and benefits are 

difficult to quantify, propose or adopt a regulation only upon a reasoned determination that the 

benefits of the intended regulation justify its costs.” The purpose of the “social cost of carbon” (SCC) 

estimates presented here is to allow agencies to incorporate the social benefits of reducing carbon 

dioxide (CO2) emissions into cost-benefit analyses of regulatory actions that have small, or “marginal,” 

impacts on cumulative global emissions. The estimates are presented with an acknowledgement of the 

many uncertainties involved and with a clear understanding that they should be updated over time to 

reflect increasing knowledge of the science and economics of climate impacts. 

The SCC is an estimate of the monetized damages associated with an incremental increase in carbon 

emissions in a given year. It is intended to include (but is not limited to) changes in net agricultural 

productivity, human health, property damages from increased flood risk, and the value of ecosystem 

services due to climate change. 

This document presents a summary of the interagency process that developed these SCC estimates. 

Technical experts from numerous agencies met on a regular basis to consider public comments, explore 

the technical literature in relevant fields, and discuss key model inputs and assumptions. The main 

objective of this process was to develop a range of SCC values using a defensible set of input 

assumptions grounded in the existing scientific and economic literatures. In this way, key uncertainties 

and model differences transparently and consistently inform the range of SCC estimates used in the 

rulemaking process. 

The interagency group selected four SCC values for use in regulatory analyses. Three values are based 

on the average SCC from three integrated assessment models, at discount rates of 2.5, 3, and 5 percent. 

The fourth value, which represents the 95th percentile SCC estimate across all three models at a 3 

percent discount rate, is included to represent higher-than-expected impacts from temperature change 

further out in the tails of the SCC distribution. 

Social Cost of CO2, 2010 – 2050 (in 2007 dollars) 

Discount Rate 5% 3% 2.5% 3% 

Year Avg Avg Avg 95th 

2010 4.7 21.4 35.1 64.9 

2015 5.7 23.8 38.4 72.8 

2020 6.8 26.3 41.7 80.7 

2025 8.2 29.6 45.9 90.4 

2030 9.7 32.8 50.0 100.0 

2035 11.2 36.0 54.2 109.7 

2040 12.7 39.2 58.4 119.3 

2045 14.2 42.1 61.7 127.8 

2050 15.7 44.9 65.0 136.2 

1 



  

 

      

                

                    

              

                   

          

              

                 

               

                 

                 

                

               

           

               

              

                   

               

               

                    

             

              

               

                 

                  

                   

               

              

               

                 

               

                 

    

               

                 

            

                                                           
                       

                    

                     

    

I. Monetizing Carbon Dioxide Emissions 

The “social cost of carbon” (SCC) is an estimate of the monetized damages associated with an 

incremental increase in carbon emissions in a given year. It is intended to include (but is not limited to) 

changes in net agricultural productivity, human health, property damages from increased flood risk, and 

the value of ecosystem services. We report estimates of the social cost of carbon in dollars per metric 

ton of carbon dioxide throughout this document.1 

When attempting to assess the incremental economic impacts of carbon dioxide emissions, the analyst 

faces a number of serious challenges. A recent report from the National Academies of Science (NRC 

2009) points out that any assessment will suffer from uncertainty, speculation, and lack of information 

about (1) future emissions of greenhouse gases, (2) the effects of past and future emissions on the 

climate system, (3) the impact of changes in climate on the physical and biological environment, and (4) 

the translation of these environmental impacts into economic damages. As a result, any effort to 

quantify and monetize the harms associated with climate change will raise serious questions of science, 

economics, and ethics and should be viewed as provisional. 

Despite the serious limits of both quantification and monetization, SCC estimates can be useful in 

estimating the social benefits of reducing carbon dioxide emissions. Under Executive Order 12866, 

agencies are required, to the extent permitted by law, “to assess both the costs and the benefits of the 

intended regulation and, recognizing that some costs and benefits are difficult to quantify, propose or 

adopt a regulation only upon a reasoned determination that the benefits of the intended regulation 

justify its costs.” The purpose of the SCC estimates presented here is to make it possible for agencies to 

incorporate the social benefits from reducing carbon dioxide emissions into cost-benefit analyses of 

regulatory actions that have small, or “marginal,” impacts on cumulative global emissions. Most federal 

regulatory actions can be expected to have marginal impacts on global emissions. 

For such policies, the benefits from reduced (or costs from increased) emissions in any future year can 

be estimated by multiplying the change in emissions in that year by the SCC value appropriate for that 

year. The net present value of the benefits can then be calculated by multiplying each of these future 

benefits by an appropriate discount factor and summing across all affected years. This approach 

assumes that the marginal damages from increased emissions are constant for small departures from 

the baseline emissions path, an approximation that is reasonable for policies that have effects on 

emissions that are small relative to cumulative global carbon dioxide emissions. For policies that have a 

large (non-marginal) impact on global cumulative emissions, there is a separate question of whether the 

SCC is an appropriate tool for calculating the benefits of reduced emissions; we do not attempt to 

answer that question here. 

An interagency group convened on a regular basis to consider public comments, explore the technical 

literature in relevant fields, and discuss key inputs and assumptions in order to generate SCC estimates. 

Agencies that actively participated in the interagency process include the Environmental Protection 

1 
In this document, we present all values of the SCC as the cost per metric ton of CO2 emissions. Alternatively, one 

could report the SCC as the cost per metric ton of carbon emissions. The multiplier for translating between mass of 

CO2 and the mass of carbon is 3.67 (the molecular weight of CO2 divided by the molecular weight of carbon = 

44/12 = 3.67). 

2 



  

             

                

             

                

                    

                

               

    

               

                   

                

              

                  

                    

                

               

                    

                      

   

                

               

                    

               

                  

          

            

                 

                 

                  

                  

                      

                    

                   

                   

                

                     

                  

              

                  

              

Agency, and the Departments of Agriculture, Commerce, Energy, Transportation, and Treasury. This 

process was convened by the Council of Economic Advisers and the Office of Management and Budget, 

with active participation and regular input from the Council on Environmental Quality, National 

Economic Council, Office of Energy and Climate Change, and Office of Science and Technology Policy. 

The main objective of this process was to develop a range of SCC values using a defensible set of input 

assumptions that are grounded in the existing literature. In this way, key uncertainties and model 

differences can more transparently and consistently inform the range of SCC estimates used in the 

rulemaking process. 

The interagency group selected four SCC estimates for use in regulatory analyses. For 2010, these 

estimates are $5, $21, $35, and $65 (in 2007 dollars). The first three estimates are based on the average 

SCC across models and socio-economic and emissions scenarios at the 5, 3, and 2.5 percent discount 

rates, respectively. The fourth value is included to represent the higher-than-expected impacts from 

temperature change further out in the tails of the SCC distribution. For this purpose, we use the SCC 

value for the 95th percentile at a 3 percent discount rate. The central value is the average SCC across 

models at the 3 percent discount rate. For purposes of capturing the uncertainties involved in 

regulatory impact analysis, we emphasize the importance and value of considering the full range. These 

SCC estimates also grow over time. For instance, the central value increases to $24 per ton of CO2 in 

2015 and $26 per ton of CO2 in 2020. See Appendix A for the full range of annual SCC estimates from 

2010 to 2050. 

It is important to emphasize that the interagency process is committed to updating these estimates as 

the science and economic understanding of climate change and its impacts on society improves over 

time. Specifically, we have set a preliminary goal of revisiting the SCC values within two years or at such 

time as substantially updated models become available, and to continue to support research in this 

area. In the meantime, we will continue to explore the issues raised in this document and consider 

public comments as part of the ongoing interagency process. 

II. Social Cost of Carbon Values Used in Past Regulatory Analyses 

To date, economic analyses for Federal regulations have used a wide range of values to estimate the 

benefits associated with reducing carbon dioxide emissions. In the final model year 2011 CAFE rule, the 

Department of Transportation (DOT) used both a “domestic” SCC value of $2 per ton of CO2 and a 

“global” SCC value of $33 per ton of CO2 for 2007 emission reductions (in 2007 dollars), increasing both 

values at 2.4 percent per year. It also included a sensitivity analysis at $80 per ton of CO2. A domestic 

SCC value is meant to reflect the value of damages in the United States resulting from a unit change in 

carbon dioxide emissions, while a global SCC value is meant to reflect the value of damages worldwide. 

A 2008 regulation proposed by DOT assumed a domestic SCC value of $7 per ton CO2 (in 2006 dollars) 

for 2011 emission reductions (with a range of $0-$14 for sensitivity analysis), also increasing at 2.4 

percent per year. A regulation finalized by DOE in October of 2008 used a domestic SCC range of $0 to 

$20 per ton CO2 for 2007 emission reductions (in 2007 dollars). In addition, EPA’s 2008 Advance Notice 

of Proposed Rulemaking for Greenhouse Gases identified what it described as “very preliminary” SCC 

estimates subject to revision. EPA’s global mean values were $68 and $40 per ton CO2 for discount rates 

of approximately 2 percent and 3 percent, respectively (in 2006 dollars for 2007 emissions). 

3 



  

                 

               

             

             

                

               

      

                  

                       

             

           

                 

               

                  

                    

               

 

              

                  

               

              

 

      

 

                 

              

                

        

                 

               

             

                 

                

                 

              

                   

               

                

               

                

                 

     

In 2009, an interagency process was initiated to offer a preliminary assessment of how best to quantify 

the benefits from reducing carbon dioxide emissions. To ensure consistency in how benefits are 

evaluated across agencies, the Administration sought to develop a transparent and defensible method, 

specifically designed for the rulemaking process, to quantify avoided climate change damages from 

reduced CO2 emissions. The interagency group did not undertake any original analysis. Instead, it 

combined SCC estimates from the existing literature to use as interim values until a more 

comprehensive analysis could be conducted. 

The outcome of the preliminary assessment by the interagency group was a set of five interim values: 

global SCC estimates for 2007 (in 2006 dollars) of $55, $33, $19, $10, and $5 per ton of CO2. The $33 and 

$5 values represented model-weighted means of the published estimates produced from the most 

recently available versions of three integrated assessment models—DICE, PAGE, and FUND—at 

approximately 3 and 5 percent discount rates. The $55 and $10 values were derived by adjusting the 

published estimates for uncertainty in the discount rate (using factors developed by Newell and Pizer 

(2003)) at 3 and 5 percent discount rates, respectively. The $19 value was chosen as a central value 

between the $5 and $33 per ton estimates. All of these values were assumed to increase at 3 percent 

annually to represent growth in incremental damages over time as the magnitude of climate change 

increases. 

These interim values represent the first sustained interagency effort within the U.S. government to 

develop an SCC for use in regulatory analysis. The results of this preliminary effort were presented in 

several proposed and final rules and were offered for public comment in connection with proposed 

rules, including the joint EPA-DOT fuel economy and CO2 tailpipe emission proposed rules. 

III. Approach and Key Assumptions 

Since the release of the interim values, interagency group has reconvened on a regular basis to generate 

improved SCC estimates. Specifically, the group has considered public comments and further explored 

the technical literature in relevant fields. This section details the several choices and assumptions that 

underlie the resulting estimates of the SCC. 

It is important to recognize that a number of key uncertainties remain, and that current SCC estimates 

should be treated as provisional and revisable since they will evolve with improved scientific and 

economic understanding. The interagency group also recognizes that the existing models are imperfect 

and incomplete. The National Academy of Science (2009) points out that there is tension between the 

goal of producing quantified estimates of the economic damages from an incremental ton of carbon and 

the limits of existing efforts to model these effects. Throughout this document, we highlight a number 

of concerns and problems that should be addressed by the research community, including research 

programs housed in many of the agencies participating in the interagency process to estimate the SCC. 

The U.S. Government will periodically review and reconsider estimates of the SCC used for cost-benefit 

analyses to reflect increasing knowledge of the science and economics of climate impacts, as well as 

improvements in modeling. In this context, statements recognizing the limitations of the analysis and 

calling for further research take on exceptional significance. The interagency group offers the new SCC 

values with all due humility about the uncertainties embedded in them and with a sincere promise to 

continue work to improve them. 
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A. Integrated Assessment Models 

We rely on three integrated assessment models (IAMs) commonly used to estimate the SCC: the FUND, 

DICE, and PAGE models.2 These models are frequently cited in the peer-reviewed literature and used in 

the IPCC assessment. Each model is given equal weight in the SCC values developed through this 

process, bearing in mind their different limitations (discussed below). 

These models are useful because they combine climate processes, economic growth, and feedbacks 

between the climate and the global economy into a single modeling framework. At the same time, they 

gain this advantage at the expense of a more detailed representation of the underlying climatic and 

economic systems. DICE, PAGE, and FUND all take stylized, reduced-form approaches (see NRC 2009 for 

a more detailed discussion; see Nordhaus 2008 on the possible advantages of this approach). Other 

IAMs may better reflect the complexity of the science in their modeling frameworks but do not link 

physical impacts to economic damages. There is currently a limited amount of research linking climate 

impacts to economic damages, which makes this exercise even more difficult. Underlying the three 

IAMs selected for this exercise are a number of simplifying assumptions and judgments reflecting the 

various modelers’ best attempts to synthesize the available scientific and economic research 

characterizing these relationships. 

The three IAMs translate emissions into changes in atmospheric greenhouse concentrations, 

atmospheric concentrations into changes in temperature, and changes in temperature into economic 

damages. The emissions projections used in the models are based on specified socio-economic (GDP 

and population) pathways. These emissions are translated into concentrations using the carbon cycle 

built into each model, and concentrations are translated into warming based on each model’s simplified 

representation of the climate and a key parameter, climate sensitivity. Each model uses a different 

approach to translate warming into damages. Finally, transforming the stream of economic damages 

over time into a single value requires judgments about how to discount them. 

Each model takes a slightly different approach to model how changes in emissions result in changes in 

economic damages. In PAGE, for example, the consumption-equivalent damages in each period are 

calculated as a fraction of GDP, depending on the temperature in that period relative to the pre-

industrial average temperature in each region. In FUND, damages in each period also depend on the 

rate of temperature change from the prior period. In DICE, temperature affects both consumption and 

investment. We describe each model in greater detail here. In a later section, we discuss key gaps in 

how the models account for various scientific and economic processes (e.g. the probability of 

catastrophe, and the ability to adapt to climate change and the physical changes it causes). 

2 The DICE (Dynamic Integrated Climate and Economy) model by William Nordhaus evolved from a series of energy 

models and was first presented in 1990 (Nordhaus and Boyer 2000, Nordhaus 2008). The PAGE (Policy Analysis of 

the Greenhouse Effect) model was developed by Chris Hope in 1991 for use by European decision-makers in 

assessing the marginal impact of carbon emissions (Hope 2006, Hope 2008). The FUND (Climate Framework for 

Uncertainty, Negotiation, and Distribution) model, developed by Richard Tol in the early 1990s, originally to study 

international capital transfers in climate policy. is now widely used to study climate impacts (e.g., Tol 2002a, Tol 

2002b, Anthoff et al. 2009, Tol 2009). 
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The parameters and assumptions embedded in the three models vary widely. A key objective of the 

interagency process was to enable a consistent exploration of the three models while respecting the 

different approaches to quantifying damages taken by the key modelers in the field. An extensive 

review of the literature was conducted to select three sets of input parameters for these models: 

climate sensitivity, socio-economic and emissions trajectories, and discount rates. A probability 

distribution for climate sensitivity was specified as an input into all three models. In addition, the 

interagency group used a range of scenarios for the socio-economic parameters and a range of values 

for the discount rate. All other model features were left unchanged, relying on the model developers’ 

best estimates and judgments. In DICE, these parameters are handled deterministically and represented 

by fixed constants; in PAGE, most parameters are represented by probability distributions. FUND was 

also run in a mode in which parameters were treated probabilistically. 

The sensitivity of the results to other aspects of the models (e.g. the carbon cycle or damage function) is 

also important to explore in the context of future revisions to the SCC but has not been incorporated 

into these estimates. Areas for future research are highlighted at the end of this document. 

The DICE Model 

The DICE model is an optimal growth model based on a global production function with an extra stock 

variable (atmospheric carbon dioxide concentrations). Emission reductions are treated as analogous to 

investment in “natural capital.” By investing in natural capital today through reductions in emissions— 

implying reduced consumption—harmful effects of climate change can be avoided and future 

consumption thereby increased. 

For purposes of estimating the SCC, carbon dioxide emissions are a function of global GDP and the 

carbon intensity of economic output, with the latter declining over time due to technological progress. 

The DICE damage function links global average temperature to the overall impact on the world 

economy. It varies quadratically with temperature change to capture the more rapid increase in 

damages expected to occur under more extreme climate change, and is calibrated to include the effects 

of warming on the production of market and nonmarket goods and services. It incorporates impacts on 

agriculture, coastal areas (due to sea level rise), “other vulnerable market sectors” (based primarily on 

changes in energy use), human health (based on climate-related diseases, such as malaria and dengue 

fever, and pollution), non-market amenities (based on outdoor recreation), and human settlements and 

ecosystems. The DICE damage function also includes the expected value of damages associated with 

low probability, high impact “catastrophic” climate change. This last component is calibrated based on a 

survey of experts (Nordhaus 1994). The expected value of these impacts is then added to the other 

market and non-market impacts mentioned above. 

No structural components of the DICE model represent adaptation explicitly, though it is included 

implicitly through the choice of studies used to calibrate the aggregate damage function. For example, 

its agricultural impact estimates assume that farmers can adjust land use decisions in response to 

changing climate conditions, and its health impact estimates assume improvements in healthcare over 

time. In addition, the small impacts on forestry, water systems, construction, fisheries, and outdoor 

recreation imply optimistic and costless adaptation in these sectors (Nordhaus and Boyer, 2000; Warren 
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et al., 2006). Costs of resettlement due to sea level rise are incorporated into damage estimates, but 

their magnitude is not clearly reported. Mastrandrea’s (2009) review concludes that “in general, DICE 

assumes very effective adaptation, and largely ignores adaptation costs." 

Note that the damage function in DICE has a somewhat different meaning from the damage functions in 

FUND and PAGE. Because GDP is endogenous in DICE and because damages in a given year reduce 

investment in that year, damages propagate forward in time and reduce GDP in future years. In 

contrast, GDP is exogenous in FUND and PAGE, so damages in any given year do not propagate forward.3 

The PAGE Model 

PAGE2002 (version 1.4epm) treats GDP growth as exogenous. It divides impacts into economic, non-

economic, and catastrophic categories and calculates these impacts separately for eight geographic 

regions. Damages in each region are expressed as a fraction of output, where the fraction lost depends 

on the temperature change in each region. Damages are expressed as power functions of temperature 

change. The exponents of the damage function are the same in all regions but are treated as uncertain, 

with values ranging from 1 to 3 (instead of being fixed at 2 as in DICE). 

PAGE2002 includes the consequences of catastrophic events in a separate damage sub-function. Unlike 

DICE, PAGE2002 models these events probabilistically. The probability of a “discontinuity” (i.e., a 

catastrophic event) is assumed to increase with temperature above a specified threshold. The threshold 

temperature, the rate at which the probability of experiencing a discontinuity increases above the 

threshold, and the magnitude of the resulting catastrophe are all modeled probabilistically. 

Adaptation is explicitly included in PAGE. Impacts are assumed to occur for temperature increases 

above some tolerable level (2°C for developed countries and 0°C for developing countries for economic 

impacts, and 0°C for all regions for non-economic impacts), but adaptation is assumed to reduce these 

impacts. Default values in PAGE2002 assume that the developed countries can ultimately eliminate up 

to 90 percent of all economic impacts beyond the tolerable 2°C increase and that developing countries 

can eventually eliminate 50 percent of their economic impacts. All regions are assumed to be able to 

mitigate 25 percent of the non-economic impacts through adaptation (Hope 2006). 

The FUND Model 

Like PAGE, the FUND model treats GDP growth as exogenous. It includes separately calibrated damage 

functions for eight market and nonmarket sectors: agriculture, forestry, water, energy (based on heating 

and cooling demand), sea level rise (based on the value of land lost and the cost of protection), 

3 
Using the default assumptions in DICE 2007, this effect generates an approximately 25 percent increase in the 

SCC relative to damages calculated by fixing GDP. In DICE2007, the time path of GDP is endogenous. Specifically, 

the path of GDP depends on the rate of saving and level of abatement in each period chosen by the optimizing 

representative agent in the model. We made two modifications to DICE to make it consistent with EMF GDP 

trajectories (see next section): we assumed a fixed rate of savings of 20%, and we re-calibrated the exogenous 

path of total factor productivity so that DICE would produce GDP projections in the absence of warming that 

exactly matched the EMF scenarios. 
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ecosystems, human health (diarrhea, vector-borne diseases, and cardiovascular and respiratory 

mortality), and extreme weather. Each impact sector has a different functional form, and is calculated 

separately for sixteen geographic regions. In some impact sectors, the fraction of output lost or gained 

due to climate change depends not only on the absolute temperature change but also on the rate of 

temperature change and level of regional income.4 In the forestry and agricultural sectors, economic 

damages also depend on CO2 concentrations. 

Tol (2009) discusses impacts not included in FUND, noting that many are likely to have a relatively small 

effect on damage estimates (both positive and negative). However, he characterizes several omitted 

impacts as “big unknowns”: for instance, extreme climate scenarios, biodiversity loss, and effects on 

economic development and political violence. With regard to potentially catastrophic events, he notes, 

“Exactly what would cause these sorts of changes or what effects they would have are not well-

understood, although the chance of any one of them happening seems low. But they do have the 

potential to happen relatively quickly, and if they did, the costs could be substantial. Only a few studies 

of climate change have examined these issues.” 

Adaptation is included both implicitly and explicitly in FUND. Explicit adaptation is seen in the 

agriculture and sea level rise sectors. Implicit adaptation is included in sectors such as energy and 

human health, where wealthier populations are assumed to be less vulnerable to climate impacts. For 

example, the damages to agriculture are the sum of three effects: (1) those due to the rate of 

temperature change (damages are always positive); (2) those due to the level of temperature change 

(damages can be positive or negative depending on region and temperature); and (3) those from CO2 

fertilization (damages are generally negative but diminishing to zero). 

Adaptation is incorporated into FUND by allowing damages to be smaller if climate change happens 

more slowly. The combined effect of CO2 fertilization in the agricultural sector, positive impacts to some 

regions from higher temperatures, and sufficiently slow increases in temperature across these sectors 

can result in negative economic damages from climate change. 

Damage Functions 

To generate revised SCC values, we rely on the IAM modelers’ current best judgments of how to 

represent the effects of climate change (represented by the increase in global-average surface 

temperature) on the consumption-equivalent value of both market and non-market goods (represented 

as a fraction of global GDP). We recognize that these representations are incomplete and highly 

uncertain. But given the paucity of data linking the physical impacts to economic damages, we were not 

able to identify a better way to translate changes in climate into net economic damages, short of 

launching our own research program. 

4 In the deterministic version of FUND, the majority of damages are attributable to increased air conditioning 

demand, while reduced cold stress in Europe, North America, and Central and East Asia results in health benefits in 

those regions at low to moderate levels of warming (Warren et al., 2006). 
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Figure 1A: Annual Consumption Loss as a Fraction of Global GDP in 2100 Due to an Increase in Annual
­

Global Temperature in the DICE, FUND, and PAGE models5 

The damage functions for the three IAMs are presented in Figures 1A and 1B, using the modeler’s 

default scenarios and mean input assumptions. There are significant differences between the three 

models both at lower (figure 1B) and higher (figure 1A) increases in global-average temperature. 

The lack of agreement among the models at lower temperature increases is underscored by the fact that 

the damages from FUND are well below the 5th percentile estimated by PAGE, while the damages 

estimated by DICE are roughly equal to the 95th percentile estimated by PAGE. This is significant 

because at higher discount rates we expect that a greater proportion of the SCC value is due to damages 

in years with lower temperature increases. For example, when the discount rate is 2.5 percent, about 

45 percent of the 2010 SCC value in DICE is due to damages that occur in years when the temperature is 

less than or equal to 3 °C. This increases to approximately 55 percent and 80 percent at discount rates of 

3 and 5 percent, respectively. 

These differences underscore the need for a thorough review of damage functions—in particular, how 

the models incorporate adaptation, technological change, and catastrophic damages. Gaps in the 

literature make modifying these aspects of the models challenging, which highlights the need for 

additional research. As knowledge improves, the Federal government is committed to exploring how 

these (and other) models can be modified to incorporate more accurate estimates of damages. 

5 The x-axis represents increases in annual, rather than equilibrium, temperature, while the y-axis represents the 

annual stream of benefits as a share of global GDP. Each specific combination of climate sensitivity, socio-

economic, and emissions parameters will produce a different realization of damages for each IAM. The damage 

functions represented in Figures 1A and 1B are the outcome of default assumptions. For instance, under alternate 

assumptions, the damages from FUND may cross from negative to positive at less than or greater than 3 °C. 
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Figure 1B: Annual Consumption Loss for Lower Temperature Changes in DICE, FUND, and PAGE
­

B. Global versus Domestic Measures of SCC 

Because of the distinctive nature of the climate change problem, we center our current attention on a 

global measure of SCC. This approach is the same as that taken for the interim values, but it otherwise 

represents a departure from past practices, which tended to put greater emphasis on a domestic 

measure of SCC (limited to impacts of climate change experienced within U.S. borders). As a matter of 

law, consideration of both global and domestic values is generally permissible; the relevant statutory 

provisions are usually ambiguous and allow selection of either measure.6 

Global SCC 

Under current OMB guidance contained in Circular A-4, analysis of economically significant proposed 

and final regulations from the domestic perspective is required, while analysis from the international 

perspective is optional. However, the climate change problem is highly unusual in at least two respects. 

First, it involves a global externality: emissions of most greenhouse gases contribute to damages around 

the world even when they are emitted in the United States. Consequently, to address the global nature 

of the problem, the SCC must incorporate the full (global) damages caused by GHG emissions. Second, 

climate change presents a problem that the United States alone cannot solve. Even if the United States 

were to reduce its greenhouse gas emissions to zero, that step would be far from enough to avoid 

substantial climate change. Other countries would also need to take action to reduce emissions if 

6 
It is true that federal statutes are presumed not to have extraterritorial effect, in part to ensure that the laws of 

the United States respect the interests of foreign sovereigns. But use of a global measure for the SCC does not give 

extraterritorial effect to federal law and hence does not intrude on such interests. 
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significant changes in the global climate are to be avoided. Emphasizing the need for a global solution to 

a global problem, the United States has been actively involved in seeking international agreements to 

reduce emissions and in encouraging other nations, including emerging major economies, to take 

significant steps to reduce emissions. When these considerations are taken as a whole, the interagency 

group concluded that a global measure of the benefits from reducing U.S. emissions is preferable. 

When quantifying the damages associated with a change in emissions, a number of analysts (e.g., 

Anthoff, et al. 2009a) employ “equity weighting” to aggregate changes in consumption across regions. 

This weighting takes into account the relative reductions in wealth in different regions of the world. A 

per-capita loss of $500 in GDP, for instance, is weighted more heavily in a country with a per-capita GDP 

of $2,000 than in one with a per-capita GDP of $40,000. The main argument for this approach is that a 

loss of $500 in a poor country causes a greater reduction in utility or welfare than does the same loss in 

a wealthy nation. Notwithstanding the theoretical claims on behalf of equity weighting, the interagency 

group concluded that this approach would not be appropriate for estimating a SCC value used in 

domestic regulatory analysis.7 For this reason, the group concluded that using the global (rather than 

domestic) value, without equity weighting, is the appropriate approach. 

Domestic SCC 

As an empirical matter, the development of a domestic SCC is greatly complicated by the relatively few 

region- or country-specific estimates of the SCC in the literature. One potential source of estimates 

comes from the FUND model. The resulting estimates suggest that the ratio of domestic to global 

benefits of emission reductions varies with key parameter assumptions. For example, with a 2.5 or 3 

percent discount rate, the U.S. benefit is about 7-10 percent of the global benefit, on average, across the 

scenarios analyzed. Alternatively, if the fraction of GDP lost due to climate change is assumed to be 

similar across countries, the domestic benefit would be proportional to the U.S. share of global GDP, 

which is currently about 23 percent.8 

On the basis of this evidence, the interagency workgroup determined that a range of values from 7 to 23 

percent should be used to adjust the global SCC to calculate domestic effects. Reported domestic values 

should use this range. It is recognized that these values are approximate, provisional, and highly 

speculative. There is no a priori reason why domestic benefits should be a constant fraction of net global 

damages over time. Further, FUND does not account for how damages in other regions could affect the 

United States (e.g., global migration, economic and political destabilization). If more accurate methods 

for calculating the domestic SCC become available, the Federal government will examine these to 

determine whether to update its approach. 

7 
It is plausible that a loss of $X inflicts more serious harm on a poor nation than on a wealthy one, but 

development of the appropriate "equity weight" is challenging. Emissions reductions also impose costs, and hence 

a full account would have to consider that a given cost of emissions reductions imposes a greater utility or welfare 

loss on a poor nation than on a wealthy one. Even if equity weighting—for both the costs and benefits of emissions 

reductions—is appropriate when considering the utility or welfare effects of international action, the interagency 

group concluded that it should not be used in developing an SCC for use in regulatory policy at this time. 
8 

Based on 2008 GDP (in current US dollars) from the World Bank Development Indicators Report. 
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C. Valuing Non-CO2 Emissions 

While CO2 is the most prevalent greenhouse gas emitted into the atmosphere, the U.S. included five 

other greenhouse gases in its recent endangerment finding: methane, nitrous oxide, 

hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. The climate impact of these gases is 

commonly discussed in terms of their 100-year global warming potential (GWP). GWP measures the 

ability of different gases to trap heat in the atmosphere (i.e., radiative forcing per unit of mass) over a 

particular timeframe relative to CO2. However, because these gases differ in both radiative forcing and 

atmospheric lifetimes, their relative damages are not constant over time. For example, because 

methane has a short lifetime, its impacts occur primarily in the near term and thus are not discounted as 

heavily as those caused by longer-lived gases. Impacts other than temperature change also vary across 

gases in ways that are not captured by GWP. For instance, CO2 emissions, unlike methane and other 

greenhouse gases, contribute to ocean acidification. Likewise, damages from methane emissions are 

not offset by the positive effect of CO2 fertilization. Thus, transforming gases into CO2-equivalents using 

GWP, and then multiplying the carbon-equivalents by the SCC, would not result in accurate estimates of 

the social costs of non-CO2 gases. 

In light of these limitations, and the significant contributions of non-CO2 emissions to climate change, 

further research is required to link non-CO2 emissions to economic impacts. Such work would feed into 

efforts to develop a monetized value of reductions in non-CO2 greenhouse gas emissions. As part of 

ongoing work to further improve the SCC estimates, the interagency group hopes to develop methods to 

value these other greenhouse gases. The goal is to develop these estimates by the time we issue 

revised SCC estimates for carbon dioxide emissions. 

D. Equilibrium Climate Sensitivity 

Equilibrium climate sensitivity (ECS) is a key input parameter for the DICE, PAGE, and FUND models.9 It 

is defined as the long-term increase in the annual global-average surface temperature from a doubling 

of atmospheric CO2 concentration relative to pre-industrial levels (or stabilization at a concentration of 

approximately 550 parts per million (ppm)). Uncertainties in this important parameter have received 

substantial attention in the peer-reviewed literature. 

The most authoritative statement about equilibrium climate sensitivity appears in the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC): 

Basing our assessment on a combination of several independent lines of evidence…including 

observed climate change and the strength of known feedbacks simulated in [global climate models], 

we conclude that the global mean equilibrium warming for doubling CO2, or ‘equilibrium climate 

9 
The equilibrium climate sensitivity includes the response of the climate system to increased greenhouse gas 

concentrations over the short to medium term (up to 100-200 years), but it does not include long-term feedback 

effects due to possible large-scale changes in ice sheets or the biosphere, which occur on a time scale of many 

hundreds to thousands of years (e.g. Hansen et al. 2007). 
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sensitivity’, is likely to lie in the range 2 °C to 4.5 °C, with a most likely value of about 3 °C. 

Equilibrium climate sensitivity is very likely larger than 1.5 °C. 
10 

For fundamental physical reasons as well as data limitations, values substantially higher than 4.5 °C 

still cannot be excluded, but agreement with observations and proxy data is generally worse for 

those high values than for values in the 2 °C to 4.5 °C range. (Meehl et al., 2007, p 799) 

After consulting with several lead authors of this chapter of the IPCC report, the interagency workgroup 

selected four candidate probability distributions and calibrated them to be consistent with the above 

statement: Roe and Baker (2007), log-normal, gamma, and Weibull. Table 1 included below gives 

summary statistics for the four calibrated distributions. 

Table 1: Summary Statistics for Four Calibrated Climate Sensitivity Distributions 

Roe & Baker Log-normal Gamma Weibull 

Pr(ECS < 1.5°C) 0.013 0.050 0.070 0.102 

Pr(2°C < ECS < 4.5°C) 0.667 0.667 0.667 0.667 

5th percentile 1.72 1.49 1.37 1.13 

10th percentile 1.91 1.74 1.65 1.48 

Mode 2.34 2.52 2.65 2.90 

Median (50th percentile) 3.00 3.00 3.00 3.00 

Mean 3.50 3.28 3.19 3.07 

90th percentile 5.86 5.14 4.93 4.69 

95th percentile 7.14 5.97 5.59 5.17 

Each distribution was calibrated by applying three constraints from the IPCC: 

(1) a median equal to 3°C, to reflect the judgment of “a most likely value of about 3 °C”;11 

(2) two-thirds probability that the equilibrium climate sensitivity lies between 2 and 4.5 °C; and 

(3) zero probability that it is less than 0°C or greater than 10°C (see Hegerl et al. 2006, p. 721). 

We selected the calibrated Roe and Baker distribution from the four candidates for two reasons. First, 

the Roe and Baker distribution is the only one of the four that is based on a theoretical understanding of 

the response of the climate system to increased greenhouse gas concentrations (Roe and Baker 2007, 

10 
This is in accord with the judgment that it “is likely to lie in the range 2 °C to 4.5 °C” and the IPCC definition of 

“likely” as greater than 66 percent probability (Le Treut et al.2007). “Very likely” indicates a greater than 90 

percent probability. 
11 

Strictly speaking, “most likely” refers to the mode of a distribution rather than the median, but common usage 

would allow the mode, median, or mean to serve as candidates for the central or “most likely” value and the IPCC 

report is not specific on this point. For the distributions we considered, the median was between the mode and 

the mean. For the Roe and Baker distribution, setting the median equal to 3°C, rather than the mode or mean, 

gave a 95
th 

percentile that is more consistent with IPCC judgments and the literature. For example, setting the 

mean and mode equal to 3°C produced 95
th 

percentiles of 5.6 and 8.6 °C, respectively, which are in the lower and 

upper end of the range in the literature. Finally, the median is closer to 3°C than is the mode for the truncated 

distributions selected by the IPCC (Hegerl, et al., 2006); the average median is 3.1 °C and the average mode is 2.3 

°C, which is most consistent with a Roe and Baker distribution with the median set equal to 3 °C. 
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Roe 2008). In contrast, the other three distributions are mathematical functions that are arbitrarily 

chosen based on simplicity, convenience, and general shape. The Roe and Baker distribution results 

from three assumptions about climate response: (1) absent feedback effects, the equilibrium climate 

sensitivity is equal to 1.2 °C; (2) feedback factors are proportional to the change in surface temperature; 

and (3) uncertainties in feedback factors are normally distributed. There is widespread agreement on 

the first point and the second and third points are common assumptions. 

Second, the calibrated Roe and Baker distribution better reflects the IPCC judgment that “values 

substantially higher than 4.5°C still cannot be excluded.” Although the IPCC made no quantitative 

judgment, the 95th percentile of the calibrated Roe & Baker distribution (7.1 °C) is much closer to the 

mean and the median (7.2 °C) of the 95th percentiles of 21 previous studies summarized by Newbold and 

Daigneault (2009). It is also closer to the mean (7.5 °C) and median (7.9 °C) of the nine truncated 

distributions examined by the IPCC (Hegerl, et al., 2006) than are the 95th percentiles of the three other 

calibrated distributions (5.2-6.0 °C). 

Finally, we note the IPCC judgment that the equilibrium climate sensitivity “is very likely larger than 

1.5°C.” Although the calibrated Roe & Baker distribution, for which the probability of equilibrium climate 

sensitivity being greater than 1.5°C is almost 99 percent, is not inconsistent with the IPCC definition of 

“very likely” as “greater than 90 percent probability,” it reflects a greater degree of certainty about very 

low values of ECS than was expressed by the IPCC. 

Figure 2: Estimates of the Probability Density Function for Equilibrium Climate Sensitivity (°C) 

Calibrated 

Roe & Baker 

To show how the calibrated Roe and Baker distribution compares to different estimates of the
�

probability distribution function of equilibrium climate sensitivity in the empirical literature, Figure 2
�
(below) overlays it on Figure 9.20 from the IPCC Fourth Assessment Report. These functions are scaled
�
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to integrate to unity between 0 °C and 10 °C. The horizontal bars show the respective 5 percent to 95 

percent ranges; dots indicate the median estimate.12 

E. Socio-Economic and Emissions Trajectories 

Another key issue considered by the interagency group is how to select the set of socio-economic and 

emissions parameters for use in PAGE, DICE, and FUND. Socio-economic pathways are closely tied to 

climate damages because, all else equal, more and wealthier people tend to emit more greenhouse 

gases and also have a higher (absolute) willingness to pay to avoid climate disruptions. For this reason, 

we consider how to model several input parameters in tandem: GDP, population, CO2 emissions, and 

non-CO2 radiative forcing. A wide variety of scenarios have been developed and used for climate change 

policy simulations (e.g., SRES 2000, CCSP 2007, EMF 2009). In determining which scenarios are 

appropriate for inclusion, we aimed to select scenarios that span most of the plausible ranges of 

outcomes for these variables. 

To accomplish this task in a transparent way, we decided to rely on the recent Stanford Energy Modeling 

Forum exercise, EMF-22. EMF-22 uses ten well-recognized models to evaluate substantial, coordinated 

global action to meet specific stabilization targets. A key advantage of relying on these data is that GDP, 

population, and emission trajectories are internally consistent for each model and scenario evaluated. 

The EMF-22 modeling effort also is preferable to the IPCC SRES due to their age (SRES were developed in 

1997) and the fact that 3 of 4 of the SRES scenarios are now extreme outliers in one or more variables. 

Although the EMF-22 scenarios have not undergone the same level of scrutiny as the SRES scenarios, 

they are recent, peer-reviewed, published, and publicly available. 

To estimate the SCC for use in evaluating domestic policies that will have a small effect on global 

cumulative emissions, we use socio-economic and emission trajectories that span a range of plausible 

scenarios. Five trajectories were selected from EMF-22 (see Table 2 below). Four of these represent 

potential business-as-usual (BAU) growth in population, wealth, and emissions and are associated with 

CO2 (only) concentrations ranging from 612 to 889 ppm in 2100. One represents an emissions pathway 

that achieves stabilization at 550 ppm CO2e (i.e., CO2-only concentrations of 425 – 484 ppm or a 

radiative forcing of 3.7 W/m2) in 2100, a lower-than-BAU trajectory.13 Out of the 10 models included in 

the EMF-22 exercise, we selected the trajectories used by MiniCAM, MESSAGE, IMAGE, and the 

optimistic scenario from MERGE. For the BAU pathways, we used the GDP, population, and emission 

trajectories from each of these four models. For the 550 ppm CO2e scenario, we averaged the GDP, 

population, and emission trajectories implied by these same four models. 

12 
The estimates based on instrumental data are from Andronova and Schlesinger (2001), Forest et al. (2002;
�

dashed line, anthropogenic forcings only), Forest et al. (2006; solid line, anthropogenic and natural forcings),
�
Gregory et al. (2002a), Knutti et al. (2002), Frame et al. (2005), and Forster and Gregory (2006). Hegerl et al. (2006)
�
are based on multiple palaeoclimatic reconstructions of north hemisphere mean temperatures over the last 700
�
years. Also shown are the 5-95 percent approximate ranges for two estimates from the last glacial maximum
�
(dashed, Annan et al. 2005; solid, Schneider von Deimling et al. 2006), which are based on models with different
�
structural properties.
�
13 

Such an emissions path would be consistent with widespread action by countries to mitigate GHG emissions,
�
though it could also result from technological advances. It was chosen because it represents the most stringent
�
case analyzed by the EMF-22 where all the models converge: a 550 ppm, not to exceed, full participation scenario.
�
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Table 2: Socioeconomic and Emissions Projections from Select EMF-22 Reference Scenarios
­

Reference Fossil and Industrial CO2 Emissions (GtCO2/yr)
­
EMF – 22 Based Scenarios 2000 2010 2020 2030 2050 2100 

IMAGE 26.6 31.9 36.9 40.0 45.3 60.1 

MERGE Optimistic 24.6 31.5 37.6 45.1 66.5 117.9 

MESSAGE 26.8 29.2 37.6 42.1 43.5 42.7 

MiniCAM 26.5 31.8 38.0 45.1 57.8 80.5 

550 ppm average 26.2 31.1 33.2 32.4 20.0 12.8 

Reference GDP (using market exchange rates in trillion 2005$)14 

EMF – 22 Based Scenarios 2000 2010 2020 2030 2050 2100 

IMAGE 38.6 53.0 73.5 97.2 156.3 396.6 

MERGE Optimistic 36.3 45.9 59.7 76.8 122.7 268.0 

MESSAGE 38.1 52.3 69.4 91.4 153.7 334.9 

MiniCAM 36.1 47.4 60.8 78.9 125.7 369.5 

550 ppm average 37.1 49.6 65.6 85.5 137.4 337.9 

Global Population (billions) 

EMF – 22 Based Scenarios 2000 2010 2020 2030 2050 2100 

IMAGE 6.1 6.9 7.6 8.2 9.0 9.1 

MERGE Optimistic 6.0 6.8 7.5 8.2 9.0 9.7 

MESSAGE 6.1 6.9 7.7 8.4 9.4 10.4 

MiniCAM 6.0 6.8 7.5 8.1 8.8 8.7 

550 ppm average 6.1 6.8 7.6 8.2 8.7 9.1 

We explore how sensitive the SCC is to various assumptions about how the future will evolve without 

prejudging what is likely to occur. The interagency group considered formally assigning probability 

weights to different states of the world, but this proved challenging to do in an analytically rigorous way 

given the dearth of information on the likelihood of a full range of future socio-economic pathways. 

There are a number of caveats. First, EMF BAU scenarios represent the modelers’ judgment of the most 

likely pathway absent mitigation policies to reduce greenhouse gas emissions, rather than the wider 

range of possible outcomes. Nevertheless, these views of the most likely outcome span a wide range, 

14 
While the EMF-22 models used market exchange rates (MER) to calculate global GDP, it is also possible to use 

purchasing power parity (PPP). PPP takes into account the different price levels across countries, so it more 

accurately describes relative standards of living across countries. MERs tend to make low-income countries appear 

poorer than they actually are. Because many models assume convergence in per capita income over time, use of 

MER-adjusted GDP gives rise to projections of higher economic growth in low income countries. There is an 

ongoing debate about how much this will affect estimated climate impacts. Critics of the use of MER argue that it 

leads to overstated economic growth and hence a significant upward bias in projections of greenhouse gas 

emissions, and unrealistically high future temperatures (e.g., Castles and Henderson 2003). Others argue that 

convergence of the emissions-intensity gap across countries at least partially offset the overstated income gap so 

that differences in exchange rates have less of an effect on emissions (Holtsmark and Alfsen, 2005; Tol, 2006). 

Nordhaus (2007b) argues that the ideal approach is to use superlative PPP accounts (i.e., using cross-sectional PPP 

measures for relative incomes and outputs and national accounts price and quantity indexes for time-series 

extrapolations). However, he notes that it important to keep this debate in perspective; it is by no means clear that 

exchange-rate-conversion issues are as important as uncertainties about population, technological change, or the 

many geophysical uncertainties. 
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from the more optimistic (e.g. abundant low-cost, low-carbon energy) to more pessimistic (e.g. 

constraints on the availability of nuclear and renewables).15 Second, the socio-economic trajectories 

associated with a 550 ppm CO2e concentration scenario are not derived from an assessment of what 

policy is optimal from a benefit-cost standpoint. Rather, it is indicative of one possible future outcome. 

The emission trajectories underlying some BAU scenarios (e.g. MESSAGE’s 612 ppm) also are consistent 

with some modest policy action to address climate change.16 We chose not to include socio-economic 

trajectories that achieve even lower GHG concentrations at this time, given the difficulty many models 

had in converging to meet these targets. 

For comparison purposes, the Energy Information Agency in its 2009 Annual Energy Outlook projected 

that global carbon dioxide emissions will grow to 30.8, 35.6, and 40.4 gigatons in 2010, 2020, and 2030, 

respectively, while world GDP is projected to be $51.8, $71.0 and $93.9 trillion (in 2005 dollars using 

market exchange rates) in 2010, 2020, and 2030, respectively. These projections are consistent with 

one or more EMF-22 scenarios. Likewise, the United Nations’ 2008 Population Prospect projects 

population will grow from 6.1 billion people in 2000 to 9.1 billion people in 2050, which is close to the 

population trajectories for the IMAGE, MiniCAM, and MERGE models. 

In addition to fossil and industrial CO2 emissions, each EMF scenario provides projections of methane, 

nitrous oxide, fluorinated greenhouse gases, and net land use CO2 emissions out to 2100. These 

assumptions also are used in the three models while retaining the default radiative forcings due to other 

factors (e.g. aerosols and other gases). See the Appendix for greater detail. 

F. Discount Rate 

The choice of a discount rate, especially over long periods of time, raises highly contested and 

exceedingly difficult questions of science, economics, philosophy, and law. Although it is well 

understood that the discount rate has a large influence on the current value of future damages, there is 

no consensus about what rates to use in this context. Because carbon dioxide emissions are long-lived, 

subsequent damages occur over many years. In calculating the SCC, we first estimate the future 

damages to agriculture, human health, and other market and non-market sectors from an additional 

unit of carbon dioxide emitted in a particular year in terms of reduced consumption (or consumption 

equivalents) due to the impacts of elevated temperatures, as represented in each of the three IAMs. 

Then we discount the stream of future damages to its present value in the year when the additional unit 

of emissions was released using the selected discount rate, which is intended to reflect society's 

marginal rate of substitution between consumption in different time periods. 

For rules with both intra- and intergenerational effects, agencies traditionally employ constant discount 

rates of both 3 percent and 7 percent in accordance with OMB Circular A-4. As Circular A-4 

acknowledges, however, the choice of discount rate for intergenerational problems raises distinctive 

15 
For instance, in the MESSAGE model’s reference case total primary energy production from nuclear, biomass, 

and non-biomass renewables is projected to increase from about 15 percent of total primary energy in 2000 to 54 

percent in 2100. In comparison, the MiniCAM reference case shows 10 percent in 2000 and 21 percent in 2100. 
16 For example, MiniCAM projects if all non-US OECD countries reduce CO2 emissions to 83 percent below 2005 

levels by 2050 (per the G-8 agreement) but all other countries continue along a BAU path CO2 concentrations in 

2100 would drop from 794 ppmv in its reference case to 762 ppmv. 
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problems and presents considerable challenges. After reviewing those challenges, Circular A-4 states, “If 

your rule will have important intergenerational benefits or costs you might consider a further sensitivity 

analysis using a lower but positive discount rate in addition to calculating net benefits using discount 

rates of 3 and 7 percent.” For the specific purpose of developing the SCC, we adapt and revise that 

approach here. 

Arrow et al. (1996) outlined two main approaches to determine the discount rate for climate change 

analysis, which they labeled “descriptive” and “prescriptive.” The descriptive approach reflects a 

positive (non-normative) perspective based on observations of people’s actual choices—e.g., savings 

versus consumption decisions over time, and allocations of savings among more and less risky 

investments. Advocates of this approach generally call for inferring the discount rate from market rates 

of return “because of a lack of justification for choosing a social welfare function that is any different 

than what decision makers [individuals] actually use” (Arrow et al. 1996). 

One theoretical foundation for the cost-benefit analyses in which the social cost of carbon will be used— 

the Kaldor-Hicks potential-compensation test—also suggests that market rates should be used to 

discount future benefits and costs, because it is the market interest rate that would govern the returns 

potentially set aside today to compensate future individuals for climate damages that they bear (e.g., 

Just et al. 2004). As some have noted, the word “potentially” is an important qualification; there is no 

assurance that such returns will actually be set aside to provide compensation, and the very idea of 

compensation is difficult to define in the intergenerational context. On the other hand, societies 

provide compensation to future generations through investments in human capital and the resulting 

increase in knowledge, as well as infrastructure and other physical capital. 

The prescriptive approach specifies a social welfare function that formalizes the normative judgments 

that the decision-maker wants explicitly to incorporate into the policy evaluation—e.g., how inter-

personal comparisons of utility should be made, and how the welfare of future generations should be 

weighed against that of the present generation. Ramsey (1928), for example, has argued that it is 

“ethically indefensible” to apply a positive pure rate of time preference to discount values across 

generations, and many agree with this view. 

Other concerns also motivate making adjustments to descriptive discount rates. In particular, it has 

been noted that the preferences of future generations with regard to consumption versus 

environmental amenities may not be the same as those today, making the current market rate on 

consumption an inappropriate metric by which to discount future climate-related damages. Others 

argue that the discount rate should be below market rates to correct for market distortions and 

uncertainties or inefficiencies in intergenerational transfers of wealth, which in the Kaldor-Hicks logic 

are presumed to compensate future generations for damage (a potentially controversial assumption, as 

noted above) (Arrow et al. 1996, Weitzman 1999). 

Further, a legitimate concern about both descriptive and prescriptive approaches is that they tend to 

obscure important heterogeneity in the population. The utility function that underlies the prescriptive 

approach assumes a representative agent with perfect foresight and no credit constraints. This is an 

artificial rendering of the real world that misses many of the frictions that characterize individuals’ lives 
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and indeed the available descriptive evidence supports this. For instance, many individuals smooth 

consumption by borrowing with credit cards that have relatively high rates. Some are unable to access 

traditional credit markets and rely on payday lending operations or other high cost forms of smoothing 

consumption. Whether one puts greater weight on the prescriptive or descriptive approach, the high 

interest rates that credit-constrained individuals accept suggest that some account should be given to 

the discount rates revealed by their behavior. 

We draw on both approaches but rely primarily on the descriptive approach to inform the choice of 

discount rate. With recognition of its limitations, we find this approach to be the most defensible and 

transparent given its consistency with the standard contemporary theoretical foundations of benefit-

cost analysis and with the approach required by OMB’s existing guidance. The logic of this framework 

also suggests that market rates should be used for discounting future consumption-equivalent damages. 

Regardless of the theoretical approach used to derive the appropriate discount rate(s), we note the 

inherent conceptual and practical difficulties of adequately capturing consumption trade-offs over many 

decades or even centuries. While relying primarily on the descriptive approach in selecting specific 

discount rates, the interagency group has been keenly aware of the deeply normative dimensions of 

both the debate over discounting in the intergenerational context and the consequences of selecting 

one discount rate over another. 

Historically Observed Interest Rates 

In a market with no distortions, the return to savings would equal the private return on investment, and 

the market rate of interest would be the appropriate choice for the social discount rate. In the real 

world risk, taxes, and other market imperfections drive a wedge between the risk-free rate of return on 

capital and the consumption rate of interest. Thus, the literature recognizes two conceptual discount 

concepts—the consumption rate of interest and the opportunity cost of capital. 

According to OMB’s Circular A-4, it is appropriate to use the rate of return on capital when a regulation 

is expected to displace or alter the use of capital in the private sector. In this case, OMB recommends 

Agencies use a discount rate of 7 percent. When regulation is expected to primarily affect private 

consumption—for instance, via higher prices for goods and services—a lower discount rate of 3 percent 

is appropriate to reflect how private individuals trade-off current and future consumption. 

The interagency group examined the economics literature and concluded that the consumption rate of 

interest is the correct concept to use in evaluating the benefits and costs of a marginal change in carbon 

emissions (see Lind 1990, Arrow et al 1996, and Arrow 2000). The consumption rate of interest also is 

appropriate when the impacts of a regulation are measured in consumption (-equivalent) units, as is 

done in the three integrated assessment models used for estimating the SCC. 

Individuals use a variety of savings instruments that vary with risk level, time horizon, and tax 

characteristics. The standard analytic framework used to develop intuition about the discount rate 

typically assumes a representative agent with perfect foresight and no credit constraints. The risk-free 

rate is appropriate for discounting certain future benefits or costs, but the benefits calculated by IAMs 

are uncertain. To use the risk-free rate to discount uncertain benefits, these benefits first must be 
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transformed into "certainty equivalents," that is the maximum certain amount that we would exchange 

for the uncertain amount. However, the calculation of the certainty-equivalent requires first estimating 

the correlation between the benefits of the policy and baseline consumption. 

If the IAM projections of future impacts represent expected values (not certainty-equivalent values), 

then the appropriate discount rate generally does not equal the risk-free rate. If the benefits of the 

policy tend to be high in those states of the world in which consumption is low, then the certainty-

equivalent benefits will be higher than the expected benefits (and vice versa). Since many (though not 

necessarily all) of the important impacts of climate change will flow through market sectors such as 

agriculture and energy, and since willingness to pay for environmental protections typically increases 

with income, we might expect a positive (though not necessarily perfect) correlation between the net 

benefits from climate policies and market returns. This line of reasoning suggests that the proper 

discount rate would exceed the riskless rate. Alternatively, a negative correlation between the returns 

to climate policies and market returns would imply that a discount rate below the riskless rate is 

appropriate. 

This discussion suggests that both the post-tax riskless and risky rates can be used to capture individuals’ 

consumption-equivalent interest rate. As a measure of the post-tax riskless rate, we calculate the 

average real return from Treasury notes over the longest time period available (those from Newell and 

Pizer 2003) and adjust for Federal taxes (the average marginal rate from tax years 2003 through 2006 is 

around 27 percent).17 This calculation produces a real interest rate of about 2.7 percent, which is 

roughly consistent with Circular A-4’s recommendation to use 3 percent to represent the consumption 

rate of interest.18 A measure of the post-tax risky rate for investments whose returns are positively 

correlated with overall equity market returns can be obtained by adjusting pre-tax rates of household 

returns to risky investments (approximately 7 percent) for taxes yields a real rate of roughly 5 percent.19 

The Ramsey Equation 

Ramsey discounting also provides a useful framework to inform the choice of a discount rate. Under 

this approach, the analyst applies either positive or normative judgments in selecting values for the key 

parameters of the Ramsey equation: η (coefficient of relative risk aversion or elasticity of the marginal 

utility of consumption) and ρ (pure rate of time preference).20 These are then combined with g (growth 

17 
The literature argues for a risk-free rate on government bonds as an appropriate measure of the consumption 

rate of interest. Arrow (2000) suggests that it is roughly 3-4 percent. OMB cites evidence of a 3.1 percent pre-tax 

rate for 10-year Treasury notes in the A-4 guidance. Newell and Pizer (2003) find real interest rates between 3.5 

and 4 percent for 30-year Treasury securities. 
18 The positive approach reflects how individuals make allocation choices across time, but it is important to keep in 

mind that we wish to reflect preferences for society as a whole, which generally has a longer planning horizon. 
19 

Cambell et al (2001) estimates that the annual real return from stocks for 1900-1995 was about 7 percent. The 

annual real rate of return for the S&P 500 from 1950 – 2008 was about 6.8 percent. In the absence of a better way 

to population-weight the tax rates, we use the middle of the 20 – 40 percent range to derive a post-tax interest 

rate (Kotlikoff and Rapson 2006). 
20 

The parameter ρ measures the pure rate of time preference: people’s behavior reveals a preference for an 

increase in utility today versus the future. Consequently, it is standard to place a lower weight on utility in the 

future. The parameter η captures diminishing marginal utility: consumption in the future is likely to be higher than 

consumption today, so diminishing marginal utility of consumption implies that the same monetary damage will 

20 
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rate of per-capita consumption) to equal the interest rate at which future monetized damages are 

discounted: ρ + η∙g.21 In the simplest version of the Ramsey model, with an optimizing representative 

agent with perfect foresight, what we are calling the “Ramsey discount rate,” ρ + η∙g, will be equal to 

the rate of return to capital, i.e., the market interest rate. 

A review of the literature provides some guidance on reasonable parameter values for the Ramsey 

discounting equation, based on both prescriptive and descriptive approaches. 

•		 η. Most papers in the climate change literature adopt values for η in the range of 0.5 to 3 

(Weitzman cites plausible values as those ranging from 1 to 4), although not all authors 

articulate whether their choice is based on prescriptive or descriptive reasoning.22 Dasgupta 

(2008) argues that η should be greater than 1 and may be as high as 3, since η equal to 1 

suggests savings rates that do not conform to observed behavior. 

•		 ρ. With respect to the pure rate of time preference, most papers in the climate change 

literature adopt values for ρ in the range of 0 to 3 percent per year. The very low rates tend to 

follow from moral judgments involving intergenerational neutrality. Some have argued that to 

use any value other than ρ = 0 would unjustly discriminate against future generations (e.g., 

Arrow et al. 1996, Stern et al. 2006). However, even in an inter-generational setting, it may 

make sense to use a small positive pure rate of time preference because of the small 

probability of unforeseen cataclysmic events (Stern et al. 2006). 

•		 g. A commonly accepted approximation is around 2 percent per year. For the socio-economic 

scenarios used for this exercise, the EMF models assume that g is about 1.5-2 percent to 2100. 

Some economists and non-economists have argued for constant discount rates below 2 percent based 

on the prescriptive approach. When grounded in the Ramsey framework, proponents of this approach 

have argued that a ρ of zero avoids giving preferential treatment to one generation over another. The 

choice of η has also been posed as an ethical choice linked to the value of an additional dollar in poorer 

cause a smaller reduction of utility for wealthier individuals, either in the future or in current generations. If η= 0, 

then a one dollar increase in income is equally valuable regardless of level of income; if η= 1, then a one percent 

increase in income is equally valuable no matter the level of income; and if η> 1, then a one percent increase in 

income is less valuable to wealthier individuals. 
21 

In this case, g could be taken from the selected EMF socioeconomic scenarios or alternative assumptions about 

the rate of consumption growth. 
22 

Empirical estimates of η span a wide range of values. A benchmark value of 2 is near the middle of the range of 

values estimated or used by Szpiro (1986), Hall and Jones (2007), Arrow (2007), Dasgupta (2006, 2008), Weitzman 

(2007, 2009), and Nordhaus (2008). However, Chetty (2006) developed a method of estimating η using data on 

labor supply behavior. He shows that existing evidence of the effects of wage changes on labor supply imposes a 

tight upper bound on the curvature of utility over wealth (CRRA < 2) with the mean implied value of 0.71 and 

concludes that the standard expected utility model cannot generate high levels of risk aversion without 

contradicting established facts about labor supply. Recent work has jointly estimated the components of the 

Ramsey equation. Evans and Sezer (2005) estimate η = 1.49 for 22 OECD countries. They also estimate ρ = 1.08 

percent per year using data on mortality rates. Anthoff, et al. (2009b) estimate η = 1.18, and ρ = 1.4 percent. 

When they multiply the bivariate probability distributions from their work and Evans and Sezer (2005) together, 

they find η = 1.47, and ρ = 1.07. 

21 
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countries compared to wealthier ones. Stern et al. (2006) applies this perspective through his choice of 

ρ = 0.1 percent per year, η = 1 and g = 1.3 percent per year, which yields an annual discount rate of 1.4 

percent. In the context of permanent income savings behavior, however, Stern’s assumptions suggest 

that individuals would save 93 percent of their income.23 

Recently, Stern (2008) revisited the values used in Stern et al. (2006), stating that there is a case to be 

made for raising η due to the amount of weight lower values place on damages far in the future (over 90 

percent of expected damages occur after 2200 with η = 1). Using Stern’s assumption that ρ = 0.1 

percent, combined with a η of 1.5 to 2 and his original growth rate, yields a discount rate greater 2 

percent. 

We conclude that arguments made under the prescriptive approach can be used to justify discount rates 

between roughly 1.4 and 3.1 percent. In light of concerns about the most appropriate value for η, we 

find it difficult to justify rates at the lower end of this range under the Ramsey framework. 

Accounting for Uncertainty in the Discount Rate 

While the consumption rate of interest is an important driver of the benefits estimate, it is uncertain 

over time. Ideally, we would formally model this uncertainty, just as we do for climate sensitivity. 

Weitzman (1998, 2001) showed theoretically and Newell and Pizer (2003) and Groom et al. (2006) 

confirm empirically that discount rate uncertainty can have a large effect on net present values. A main 

result from these studies is that if there is a persistent element to the uncertainty in the discount rate 

(e.g., the rate follows a random walk), then it will result in an effective (or certainty-equivalent) discount 

rate that declines over time. Consequently, lower discount rates tend to dominate over the very long 

term (see Weitzman 1998, 1999, 2001; Newell and Pizer 2003; Groom et al. 2006; Gollier 2008; 

Summers and Zeckhauser 2008; and Gollier and Weitzman 2009). 

The proper way to model discount rate uncertainty remains an active area of research. Newell and Pizer 

(2003) employ a model of how long-term interest rates change over time to forecast future discount 

rates. Their model incorporates some of the basic features of how interest rates move over time, and its 

parameters are estimated based on historical observations of long-term rates. Subsequent work on this 

topic, most notably Groom et al. (2006), uses more general models of interest rate dynamics to allow for 

better forecasts. Specifically, the volatility of interest rates depends on whether rates are currently low 

or high and variation in the level of persistence over time. 

While Newell and Pizer (2003) and Groom et al (2006) attempt formally to model uncertainty in the 

discount rate, others argue for a declining scale of discount rates applied over time (e.g., Weitzman 

2001, and the UK’s “Green Book” for regulatory analysis). This approach uses a higher discount rate 

23 
Stern (2008) argues that building in a positive rate of exogenous technical change over time reduces the implied 

savings rate and that η at or above 2 are inconsistent with observed behavior with regard to equity. (At the same 

time, adding exogenous technical change—all else equal—would increase g as well.) 
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initially, but applies a graduated scale of lower discount rates further out in time.24 A key question that 

has emerged with regard to both of these approaches is the trade-off between potential time 

inconsistency and giving greater weight to far future outcomes (see the EPA Science Advisory Board’s 

recent comments on this topic as part of its review of their Guidelines for Economic Analysis).25 

The Discount Rates Selected for Estimating SCC 

In light of disagreement in the literature on the appropriate market interest rate to use in this context 

and uncertainty about how interest rates may change over time, we use three discount rates to span a 

plausible range of certainty-equivalent constant discount rates: 2.5, 3, and 5 percent per year. Based on 

the review in the previous sections, the interagency workgroup determined that these three rates 

reflect reasonable judgments under both descriptive and prescriptive approaches. 

The central value, 3 percent, is consistent with estimates provided in the economics literature and 

OMB’s Circular A-4 guidance for the consumption rate of interest. As previously mentioned, the 

consumption rate of interest is the correct discounting concept to use when future damages from 

elevated temperatures are estimated in consumption-equivalent units. Further, 3 percent roughly 

corresponds to the after-tax riskless interest rate. The upper value of 5 percent is included to represent 

the possibility that climate damages are positively correlated with market returns. Additionally, this 

discount rate may be justified by the high interest rates that many consumers use to smooth 

consumption across periods. 

The low value, 2.5 percent, is included to incorporate the concern that interest rates are highly 

uncertain over time. It represents the average certainty-equivalent rate using the mean-reverting and 

random walk approaches from Newell and Pizer (2003) starting at a discount rate of 3 percent. Using 

this approach, the certainty equivalent is about 2.2 percent using the random walk model and 2.8 

percent using the mean reverting approach.26 Without giving preference to a particular model, the 

average of the two rates is 2.5 percent. Further, a rate below the riskless rate would be justified if 

climate investments are negatively correlated with the overall market rate of return. Use of this lower 

value also responds to certain judgments using the prescriptive or normative approach and to ethical 

objections that have been raised about rates of 3 percent or higher. 

24 
For instance, the UK applies a discount rate of 3.5 percent to the first 30 years; 3 percent for years 31 - 75; 2.5 

percent for years 76 - 125; 2 percent for years 126 - 200; 1.5 percent for years 201 - 300; and 1 percent after 300 

years. As a sensitivity, it recommends a discount rate of 3 percent for the first 30 years, also decreasing over time. 
25 

Uncertainty in future damages is distinct from uncertainty in the discount rate. Weitzman (2008) argues that 

Stern’s choice of a low discount rate was “right for the wrong reasons.” He demonstrates how the damages from a 

low probability, catastrophic event far in the future dominate the effect of the discount rate in a present value 

calculation and result in an infinite willingness-to-pay for mitigation today. Newbold and Daigneault, (2009) and 

Nordhaus (2009) find that Weitzman’s result is sensitive to the functional forms chosen for climate sensitivity, 

utility, and consumption. Summers and Zeckhauser (2008) argue that uncertainty in future damages can also work 

in the other direction by increasing the benefits of waiting to learn the appropriate level of mitigation required. 
26 

Calculations done by Pizer et al. using the original simulation program from Newell and Pizer (2003). 
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IV. Revised SCC Estimates 

Our general approach to estimating SCC values is to run the three integrated assessment models (FUND, 

DICE, and PAGE) using the following inputs agreed upon by the interagency group: 

•		 A Roe and Baker distribution for the climate sensitivity parameter bounded between 0 and 10 

with a median of 3 °C and a cumulative probability between 2 and 4.5 °C of two-thirds. 

•		 Five sets of GDP, population and carbon emissions trajectories based on EMF-22. 

•		 Constant annual discount rates of 2.5, 3, and 5 percent. 

Because the climate sensitivity parameter is modeled probabilistically, and because PAGE and FUND 

incorporate uncertainty in other model parameters, the final output from each model run is a 

distribution over the SCC in year t. 

For each of the IAMS, the basic computational steps for calculating the SCC in a particular year t are: 

1.	� Input the path of emissions, GDP, and population from the selected EMF-22 scenarios, 

and the extrapolations based on these scenarios for post-2100 years. 

2.	� Calculate the temperature effects and (consumption-equivalent) damages in each year 

resulting from the baseline path of emissions. 

a.	� In PAGE, the consumption-equivalent damages in each period are calculated as 

a fraction of the EMF GDP forecast, depending on the temperature in that 

period relative to the pre-industrial average temperature in each region. 

b.	� In FUND, damages in each period depend on both the level and the rate of 

temperature change in that period. 

c.	� In DICE, temperature affects both consumption and investment, so we first 

adjust the EMF GDP paths as follows: Using the Cobb-Douglas production 

function with the DICE2007 parameters, we extract the path of exogenous 

technical change implied by the EMF GDP and population paths, then we 

recalculate the baseline GDP path taking into account climate damages resulting 

from the baseline emissions path. 

3.	� Add an additional unit of carbon emissions in year t. (The exact unit varies by model.) 

4.	� Recalculate the temperature effects and damages expected in all years beyond t 

resulting from this adjusted path of emissions, as in step 2. 

5.	� Subtract the damages computed in step 2 from those in step 4 in each year. (DICE is 

run in 10 year time steps, FUND in annual time steps, while the time steps in PAGE vary.) 

6.	� Discount the resulting path of marginal damages back to the year of emissions using the 

agreed upon fixed discount rates. 
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7.	� Calculate the SCC as the net present value of the discounted path of damages computed 

in step 6, divided by the unit of carbon emissions used to shock the models in step 3. 

8.	� Multiply by 12/44 to convert from dollars per ton of carbon to dollars per ton of CO2 

(2007 dollars) in DICE and FUND. (All calculations are done in tons of CO2 in PAGE). 

The steps above were repeated in each model for multiple future years to cover the time horizons 

anticipated for upcoming rulemaking analysis. To maintain consistency across the three IAMs, climate 

damages are calculated as lost consumption in each future year. 

It is important to note that each of the three models has a different default end year. The default time 

horizon is 2200 for PAGE, 2595 for DICE, and 3000 for the latest version of FUND. This is an issue for the 

multi-model approach because differences in SCC estimates may arise simply due to the model time 

horizon. Many consider 2200 too short a time horizon because it could miss a significant fraction of 

damages under certain assumptions about the growth of marginal damages and discounting, so each 

model is run here through 2300. This step required a small adjustment in the PAGE model only. This 

step also required assumptions about GDP, population, and greenhouse gas emission trajectories after 

2100, the last year for which these data are available from the EMF-22 models. (A more detailed 

discussion of these assumptions is included in the Appendix.) 

This exercise produces 45 separate distributions of the SCC for a given year, the product of 3 models, 3 

discount rates, and 5 socioeconomic scenarios. This is clearly too many separate distributions for 

consideration in a regulatory impact analysis. 

To produce a range of plausible estimates that still reflects the uncertainty in the estimation exercise, 

the distributions from each of the models and scenarios are equally weighed and combined to produce 

three separate probability distributions for SCC in a given year, one for each assumed discount rate. 

These distributions are then used to define a range of point estimates for the global SCC. In this way, no 

integrated assessment model or socioeconomic scenario is given greater weight than another. Because 

the literature shows that the SCC is quite sensitive to assumptions about the discount rate, and because 

no consensus exists on the appropriate rate to use in an intergenerational context, we present SCCs 

based on the average values across models and socioeconomic scenarios for each discount rate. 

The interagency group selected four SCC values for use in regulatory analyses. Three values are based 

on the average SCC across models and socio-economic and emissions scenarios at the 2.5, 3, and 5 

percent discount rates. The fourth value is included to represent the higher-than-expected economic 

impacts from climate change further out in the tails of the SCC distribution. For this purpose, we use the 

SCC value for the 95th percentile at a 3 percent discount rate. (The full set of distributions by model and 

scenario combination is included in the Appendix.) As noted above, the 3 percent discount rate is the 

central value, and so the central value that emerges is the average SCC across models at the 3 percent 

discount rate. For purposes of capturing the uncertainties involved in regulatory impact analysis, we 

emphasize the importance and value of considering the full range. 
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As previously discussed, low probability, high impact events are incorporated into the SCC values 

through explicit consideration of their effects in two of the three models as well as the use of a 

probability density function for equilibrium climate sensitivity. Treating climate sensitivity 

probabilistically results in more high temperature outcomes, which in turn lead to higher projections of 

damages. Although FUND does not include catastrophic damages (in contrast to the other two models), 

its probabilistic treatment of the equilibrium climate sensitivity parameter will directly affect the non-

catastrophic damages that are a function of the rate of temperature change. 

In Table 3, we begin by presenting SCC estimates for 2010 by model, scenario, and discount rate to 

illustrate the variability in the SCC across each of these input parameters. As expected, higher discount 

rates consistently result in lower SCC values, while lower discount rates result in higher SCC values for 

each socioeconomic trajectory. It is also evident that there are differences in the SCC estimated across 

the three main models. For these estimates, FUND produces the lowest estimates, while PAGE generally 

produces the highest estimates. 

Table 3: Disaggregated Social Cost of CO2 Values by Model, Socio-Economic Trajectory, and Discount 

Rate for 2010 (in 2007 dollars) 

Discount rate: 5% 3% 2.5% 3% 

Model Scenario Avg Avg Avg 95th 

IMAGE 10.8 35.8 54.2 70.8 

MERGE 7.5 22.0 31.6 42.1 

Message 9.8 29.8 43.5 58.6 

MiniCAM 8.6 28.8 44.4 57.9 

D
IC

E
 

550 Average 8.2 24.9 37.4 50.8 

IMAGE 8.3 39.5 65.5 142.4 

MERGE 5.2 22.3 34.6 82.4 

Message 7.2 30.3 49.2 115.6 

MiniCAM 6.4 31.8 54.7 115.4 

P
A

G
E

 

550 Average 5.5 25.4 42.9 104.7 

IMAGE -1.3 8.2 19.3 39.7 

MERGE -0.3 8.0 14.8 41.3 

Message -1.9 3.6 8.8 32.1 

MiniCAM -0.6 10.2 22.2 42.6 

FU
N

D
 

550 Average -2.7 -0.2 3.0 19.4 

These results are not surprising when compared to the estimates in the literature for the latest versions
�
of each model. For example, adjusting the values from the literature that were used to develop interim
�
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SCC values to 2007 dollars for the year 2010 (assuming, as we did for the interim process, that SCC 

grows at 3 percent per year), FUND yields SCC estimates at or near zero for a 5 percent discount rate 

and around $9 per ton for a 3 percent discount rate. There are far fewer estimates using the latest 

versions of DICE and PAGE in the literature: Using similar adjustments to generate 2010 estimates, we 

calculate a SCC from DICE (based on Nordhaus 2008) of around $9 per ton for a 5 percent discount rate, 

and a SCC from PAGE (based on Hope 2006, 2008) close to $8 per ton for a 4 percent discount rate. Note 

that these comparisons are only approximate since the literature generally relies on Ramsey 

discounting, while we have assumed constant discount rates.27 

The SCC estimates from FUND are sensitive to differences in emissions paths but relatively insensitive to 

differences in GDP paths across scenarios, while the reverse is true for DICE and PAGE. This likely occurs 

because of several structural differences among the models. Specifically in DICE and PAGE, the fraction 

of economic output lost due to climate damages increases with the level of temperature alone, whereas 

in FUND the fractional loss also increases with the rate of temperature change. Furthermore, in FUND 

increases in income over time decrease vulnerability to climate change (a form of adaptation), whereas 

this does not occur in DICE and PAGE. These structural differences among the models make FUND more 

sensitive to the path of emissions and less sensitive to GDP compared to DICE and PAGE. 

Figure 3 shows that IMAGE has the highest GDP in 2100 while MERGE Optimistic has the lowest. The 

ordering of global GDP levels in 2100 directly corresponds to the rank ordering of SCC for PAGE and 

DICE. For FUND, the correspondence is less clear, a result that is to be expected given its less direct 

relationship between its damage function and GDP. 

Figure 3: Level of Global GDP across EMF Scenarios 
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27 
Nordhaus (2008) runs DICE2007 with ρ = 1.5 and η = 2. The default approach in PAGE2002 (version 1.4epm) 

treats ρ and η as random parameters, specified using a triangular distribution such that the min, mode, and max = 

0.1, 1, and 2 for ρ, and 0.5, 1, and 2 for η, respectively. The FUND default value for η is 1, and Tol generates SCC 

estimates for values of ρ = 0, 1, and 3 in many recent papers (e.g. Anthoff et al. 2009). The path of per-capita 

consumption growth, g, varies over time but is treated deterministically in two of the three models. In DICE, g is 

endogenous. Under Ramsey discounting, as economic growth slows in the future, the large damages from climate 

change that occur far out in the future are discounted at a lower rate than impacts that occur in the nearer term. 

27 

http:rates.27


 

 

                    

                

                   

     

 

            

       

     

     

     

     

     

     

     

     

     

     

 

              

              

                   

                 

                

                 

                 

 

                

       

      

     

     

     

     

 

                

                    

                 

                 

             

                 

Table 4 shows the four selected SCC values in five year increments from 2010 to 2050. Values for 2010, 

2020, 2040, and 2050 are calculated by first combining all outputs (10,000 estimates per model run) 

from all scenarios and models for a given discount rate. Values for the years in between are calculated 

using a simple linear interpolation. 

Table 4: Social Cost of CO2, 2010 – 2050 (in 2007 dollars) 

Discount Rate 5% 3% 2.5% 3% 

Year Avg Avg Avg 95th 

2010 4.7 21.4 35.1 64.9 

2015 5.7 23.8 38.4 72.8 

2020 6.8 26.3 41.7 80.7 

2025 8.2 29.6 45.9 90.4 

2030 9.7 32.8 50.0 100.0 

2035 11.2 36.0 54.2 109.7 

2040 12.7 39.2 58.4 119.3 

2045 14.2 42.1 61.7 127.8 

2050 15.7 44.9 65.0 136.2 

The SCC increases over time because future emissions are expected to produce larger incremental 

damages as physical and economic systems become more stressed in response to greater climatic 

change. Note that this approach allows us to estimate the growth rate of the SCC directly using DICE, 

PAGE, and FUND rather than assuming a constant annual growth rate as was done for the interim 

estimates (using 3 percent). This helps to ensure that the estimates are internally consistent with other 

modeling assumptions. Table 5 illustrates how the growth rate for these four SCC estimates varies over 

time. The full set of annual SCC estimates between 2010 and 2050 is reported in the Appendix. 

Table 5: Changes in the Average Annual Growth Rates of SCC Estimates between 2010 and 2050 

Average Annual Growth 

Rate (%) 

5% 

Avg 

3% 

Avg 

2.5% 

Avg 

3.0% 

95th 

2010-2020 

2020-2030 

2030-2040 

2040-2050 

3.6% 

3.7% 

2.7% 

2.1% 

2.1% 

2.2% 

1.8% 

1.4% 

1.7% 

1.8% 

1.6% 

1.1% 

2.2% 

2.2% 

1.8% 

1.3% 

While the SCC estimate grows over time, the future monetized value of emissions reductions in each 

year (the SCC in year t multiplied by the change in emissions in year t) must be discounted to the 

present to determine its total net present value for use in regulatory analysis. Damages from future 

emissions should be discounted at the same rate as that used to calculate the SCC estimates themselves 

to ensure internal consistency—i.e., future damages from climate change, whether they result from 

emissions today or emissions in a later year, should be discounted using the same rate. For example, 
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climate damages in the year 2020 that are calculated using a SCC based on a 5 percent discount rate also 

should be discounted back to the analysis year using a 5 percent discount rate.28 

V. Limitations of the Analysis 

As noted, any estimate of the SCC must be taken as provisional and subject to further refinement (and 

possibly significant change) in accordance with evolving scientific, economic, and ethical 

understandings. During the course of our modeling, it became apparent that there are several areas in 

particular need of additional exploration and research. These caveats, and additional observations in 

the following section, are necessary to consider when interpreting and applying the SCC estimates. 

Incomplete treatment of non-catastrophic damages. The impacts of climate change are expected to be 

widespread, diverse, and heterogeneous. In addition, the exact magnitude of these impacts is uncertain 

because of the inherent complexity of climate processes, the economic behavior of current and future 

populations, and our inability to accurately forecast technological change and adaptation. Current IAMs 

do not assign value to all of the important physical, ecological, and economic impacts of climate change 

recognized in the climate change literature (some of which are discussed above) because of lack of 

precise information on the nature of damages and because the science incorporated into these models 

understandably lags behind the most recent research. Our ability to quantify and monetize impacts will 

undoubtedly improve with time. But it is also likely that even in future applications, a number of 

potentially significant damage categories will remain non-monetized. (Ocean acidification is one 

example of a potentially large damage from CO2 emissions not quantified by any of the three models. 

Species and wildlife loss is another example that is exceedingly difficult to monetize.) 

Incomplete treatment of potential catastrophic damages. There has been considerable recent discussion 

of the risk of catastrophic impacts and how best to account for extreme scenarios, such as the collapse 

of the Atlantic Meridional Overturning Circulation or the West Antarctic Ice Sheet, or large releases of 

methane from melting permafrost and warming oceans. Weitzman (2009) suggests that catastrophic 

damages are extremely large—so large, in fact, that the damages from a low probability, catastrophic 

event far in the future dominate the effect of the discount rate in a present value calculation and result 

in an infinite willingness-to-pay for mitigation today. However, Nordhaus (2009) concluded that the 

conditions under which Weitzman's results hold “are limited and do not apply to a wide range of 

potential uncertain scenarios." 

Using a simplified IAM, Newbold and Daigneault (2009) confirmed the potential for large catastrophe 

risk premiums but also showed that the aggregate benefit estimates can be highly sensitive to the 

shapes of both the climate sensitivity distribution and the damage function at high temperature 

changes. Pindyck (2009) also used a simplified IAM to examine high-impact low-probability risks, using a 

right-skewed gamma distribution for climate sensitivity as well as an uncertain damage coefficient, but 

in most cases found only a modest risk premium. Given this difference in opinion, further research in 

this area is needed before its practical significance can be fully understood and a reasonable approach 

developed to account for such risks in regulatory analysis. (The next section discusses the scientific 

evidence on catastrophic impacts in greater detail.) 

28 However, it is possible that other benefits or costs of proposed regulations unrelated to CO2 emissions will be 

discounted at rates that differ from those used to develop the SCC estimates. 
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Uncertainty in extrapolation of damages to high temperatures: The damage functions in these IAMs are 

typically calibrated by estimating damages at moderate temperature increases (e.g., DICE was calibrated 

at 2.5 °C) and extrapolated to far higher temperatures by assuming that damages increase as some 

power of the temperature change. Hence, estimated damages are far more uncertain under more 

extreme climate change scenarios. 

Incomplete treatment of adaptation and technological change: Each of the three integrated assessment 

models used here assumes a certain degree of low- or no-cost adaptation. For instance, Tol assumes a 

great deal of adaptation in FUND, including widespread reliance on air conditioning ; so much so, that 

the largest single benefit category in FUND is the reduced electricity costs from not having to run air 

conditioning as intensively (NRC 2009). 

Climate change also will increase returns on investment to develop technologies that allow individuals 

to cope with adverse climate conditions, and IAMs to do not adequately account for this directed 

technological change.29 For example, scientists may develop crops that are better able to withstand 

higher and more variable temperatures. Although DICE and FUND have both calibrated their agricultural 

sectors under the assumption that farmers will change land use practices in response to climate change 

(Mastrandrea, 2009), they do not take into account technological changes that lower the cost of this 

adaptation over time. On the other hand, the calibrations do not account for increases in climate 

variability, pests, or diseases, which could make adaptation more difficult than assumed by the IAMs for 

a given temperature change. Hence, models do not adequately account for potential adaptation or 

technical change that might alter the emissions pathway and resulting damages. In this respect, it is 

difficult to determine whether the incomplete treatment of adaptation and technological change in 

these IAMs under or overstate the likely damages. 

Risk aversion: A key question unanswered during this interagency process is what to assume about 

relative risk aversion with regard to high-impact outcomes. These calculations do not take into account 

the possibility that individuals may have a higher willingness to pay to reduce the likelihood of low-

probability, high-impact damages than they do to reduce the likelihood of higher-probability but lower-

impact damages with the same expected cost. (The inclusion of the 95th percentile estimate in the final 

set of SCC values was largely motivated by this concern.) If individuals do show such a higher willingness 

to pay, a further question is whether that fact should be taken into account for regulatory policy. Even if 

individuals are not risk-averse for such scenarios, it is possible that regulatory policy should include a 

degree of risk-aversion. 

Assuming a risk-neutral representative agent is consistent with OMB’s Circular A-4, which advises that 

the estimates of benefits and costs used in regulatory analysis are usually based on the average or 

the expected value and that “emphasis on these expected values is appropriate as long as society is 

‘risk neutral’ with respect to the regulatory alternatives. While this may not always be the case, 

[analysts] should in general assume ‘risk neutrality’ in [their] analysis.” 

Nordhaus (2008) points to the need to explore the relationship between risk and income in the context 

of climate change across models and to explore the role of uncertainty regarding various parameters in 

29 
However these research dollars will be diverted from whatever their next best use would have been in the 

absence of climate change (so productivity/GDP would have been still higher). 
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the results. Using FUND, Anthoff et al (2009) explored the sensitivity of the SCC to Ramsey equation 

parameter assumptions based on observed behavior. They conclude that “the assumed rate of risk 

aversion is at least as important as the assumed rate of time preference in determining the social cost of 

carbon.” Since Circular A-4 allows for a different assumption on risk preference in regulatory analysis if it 

is adequately justified, we plan to continue investigating this issue. 

V. A Further Discussion of Catastrophic Impacts and Damage Functions 

As noted above, the damage functions underlying the three IAMs used to estimate the SCC may not 

capture the economic effects of all possible adverse consequences of climate change and may therefore 

lead to underestimates of the SCC (Mastrandrea 2009). In particular, the models’ functional forms may 

not adequately capture: (1) potentially discontinuous “tipping point” behavior in Earth systems, (2) 

inter-sectoral and inter-regional interactions, including global security impacts of high-end warming, and 

(3) limited near-term substitutability between damage to natural systems and increased consumption. 

It is the hope of the interagency group that over time researchers and modelers will work to fill these 

gaps and that the SCC estimates used for regulatory analysis by the Federal government will continue to 

evolve with improvements in modeling. In the meantime, we discuss some of the available evidence. 

Extrapolation of climate damages to high levels of warming 

The damage functions in the models are calibrated at moderate levels of warming and should therefore 

be viewed cautiously when extrapolated to the high temperatures found in the upper end of the 

distribution. Recent science suggests that there are a number of potential climatic “tipping points” at 

which the Earth system may exhibit discontinuous behavior with potentially severe social and economic 

consequences (e.g., Lenton et al, 2008, Kriegler et al., 2009). These tipping points include the disruption 

of the Indian Summer Monsoon, dieback of the Amazon Rainforest and boreal forests, collapse of the 

Greenland Ice Sheet and the West Antarctic Ice Sheet, reorganization of the Atlantic Meridional 

Overturning Circulation, strengthening of El Niño-Southern Oscillation, and the release of methane from 

melting permafrost. Many of these tipping points are estimated to have thresholds between about 3 °C 

and 5 °C (Lenton et al., 2008). Probabilities of several of these tipping points were assessed through 

expert elicitation in 2005–2006 by Kriegler et al. (2009); results from this study are highlighted in Table 

6. Ranges of probability are averaged across core experts on each topic. 

As previously mentioned, FUND does not include potentially catastrophic effects. DICE assumes a small 

probability of catastrophic damages that increases with increased warming, but the damages from these 

risks are incorporated as expected values (i.e., ignoring potential risk aversion). PAGE models 

catastrophic impacts in a probabilistic framework (see Figure 1), so the high-end output from PAGE 

potentially offers the best insight into the SCC if the world were to experience catastrophic climate 

change. For instance, at the 95th percentile and a 3 percent discount rate, the SCC estimated by PAGE 

across the five socio-economic and emission trajectories of $113 per ton of CO2 is almost double the 

value estimated by DICE, $58 per ton in 2010. We cannot evaluate how well the three models account 

for catastrophic or non-catastrophic impacts, but this estimate highlights the sensitivity of SCC values in 

the tails of the distribution to the assumptions made about catastrophic impacts. 
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Table 6: Probabilities of Various Tipping Points from Expert Elicitation
­

Possible Tipping Points 

Duration 

before effect 

is fully realized 

(in years) 

Additional Warming by 2100 

0.5-1.5 C 1.5-3.0 C 3-5 C 

Reorganization of Atlantic Meridional Overturning Circulation about 100 0-18% 6-39% 18-67% 

Greenland Ice Sheet collapse at least 300 8-39% 33-73% 67-96% 

West Antarctic Ice Sheet collapse at least 300 5-41% 10-63% 33-88% 

Dieback of Amazon rainforest about 50 2-46% 14-84% 41-94% 

Strengthening of El Niño-Southern Oscillation about 100 1-13% 6-32% 19-49% 

Dieback of boreal forests about 50 13-43% 20-81% 34-91% 

Shift in Indian Summer Monsoon about 1 Not formally assessed 

Release of methane from melting permafrost Less than 100 Not formally assessed. 

PAGE treats the possibility of a catastrophic event probabilistically, while DICE treats it deterministically 

(that is, by adding the expected value of the damage from a catastrophe to the aggregate damage 

function). In part, this results in different probabilities being assigned to a catastrophic event across the 

two models. For instance, PAGE places a probability near zero on a catastrophe at 2.5 °C warming, while 

DICE assumes a 4 percent probability of a catastrophe at 2.5 °C. By comparison, Kriegler et al. (2009) 

estimate a probability of at least 16-36 percent of crossing at least one of their primary climatic tipping 

points in a scenario with temperatures about 2-4 °C warmer than pre-Industrial levels in 2100. 

It is important to note that crossing a climatic tipping point will not necessarily lead to an economic 

catastrophe in the sense used in the IAMs. A tipping point is a critical threshold across which some 

aspect of the Earth system starts to shifts into a qualitatively different state (for instance, one with 

dramatically reduced ice sheet volumes and higher sea levels). In the IAMs, a catastrophe is a low-

probability environmental change with high economic impact. 

Failure to incorporate inter-sectoral and inter-regional interactions 

The damage functions do not fully incorporate either inter-sectoral or inter-regional interactions. For 

instance, while damages to the agricultural sector are incorporated, the effects of changes in food 

supply on human health are not fully captured and depend on the modeler’s choice of studies used to 

calibrate the IAM. Likewise, the effects of climate damages in one region of the world on another region 

are not included in some of the models (FUND includes the effects of migration from sea level rise). 

These inter-regional interactions, though difficult to quantify, are the basis for climate-induced national 

and economic security concerns (e.g., Campbell et al., 2007; U.S. Department of Defense 2010) and are 

particularly worrisome at higher levels of warming. High-end warming scenarios, for instance, project 

water scarcity affecting 4.3-6.9 billion people by 2050, food scarcity affecting about 120 million 
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additional people by 2080, and the creation of millions of climate refugees (Easterling et al., 2007; 

Campbell et al., 2007). 

Imperfect substitutability of environmental amenities 

Data from the geological record of past climate changes suggests that 6 °C of warming may have severe 

consequences for natural systems. For instance, during the Paleocene-Eocene Thermal Maximum about 

55.5 million years ago, when the Earth experienced a geologically rapid release of carbon associated 

with an approximately 5 °C increase in global mean temperatures, the effects included shifts of about 

400-900 miles in the range of plants (Wing et al., 2005), and dwarfing of both land mammals (Gingerich, 

2006) and soil fauna (Smith et al., 2009). 

The three IAMs used here assume that it is possible to compensate for the economic consequences of 

damages to natural systems through increased consumption of non-climate goods, a common 

assumption in many economic models. In the context of climate change, however, it is possible that the 

damages to natural systems could become so great that no increase in consumption of non-climate 

goods would provide complete compensation (Levy et al., 2005). For instance, as water supplies 

become scarcer or ecosystems become more fragile and less bio-diverse, the services they provide may 

become increasingly more costly to replace. Uncalibrated attempts to incorporate the imperfect 

substitutability of such amenities into IAMs (Sterner and Persson, 2008) indicate that the optimal degree 

of emissions abatement can be considerably greater than is commonly recognized. 

VI. Conclusion 

The interagency group selected four SCC estimates for use in regulatory analyses. For 2010, these 

estimates are $5, $21, $35, and $65 (in 2007 dollars). The first three estimates are based on the average 

SCC across models and socio-economic and emissions scenarios at the 5, 3, and 2.5 percent discount 

rates, respectively. The fourth value is included to represent the higher-than-expected impacts from 

temperature change further out in the tails of the SCC distribution. For this purpose, we use the SCC 

value for the 95th percentile at a 3 percent discount rate. The central value is the average SCC across 

models at the 3 percent discount rate. For purposes of capturing the uncertainties involved in 

regulatory impact analysis, we emphasize the importance and value of considering the full range. These 

SCC estimates also grow over time. For instance, the central value increases to $24 per ton of CO2 in 

2015 and $26 per ton of CO2 in 2020. 

We noted a number of limitations to this analysis, including the incomplete way in which the integrated 

assessment models capture catastrophic and non-catastrophic impacts, their incomplete treatment of 

adaptation and technological change, uncertainty in the extrapolation of damages to high temperatures, 

and assumptions regarding risk aversion. The limited amount of research linking climate impacts to 

economic damages makes this modeling exercise even more difficult. It is the hope of the interagency 

group that over time researchers and modelers will work to fill these gaps and that the SCC estimates 

used for regulatory analysis by the Federal government will continue to evolve with improvements in 

modeling. 
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Appendix 

Table A1: Annual SCC Values: 2010–2050 (in 2007 dollars) 

Discount Rate 5% 3% 2.5% 3% 

Year Avg Avg Avg 95th 

2010 4.7 21.4 35.1 64.9 

2011 4.9 21.9 35.7 66.5 

2012 5.1 22.4 36.4 68.1 

2013 5.3 22.8 37.0 69.6 

2014 5.5 23.3 37.7 71.2 

2015 5.7 23.8 38.4 72.8 

2016 5.9 24.3 39.0 74.4 

2017 6.1 24.8 39.7 76.0 

2018 6.3 25.3 40.4 77.5 

2019 6.5 25.8 41.0 79.1 

2020 6.8 26.3 41.7 80.7 

2021 7.1 27.0 42.5 82.6 

2022 7.4 27.6 43.4 84.6 

2023 7.7 28.3 44.2 86.5 

2024 7.9 28.9 45.0 88.4 

2025 8.2 29.6 45.9 90.4 

2026 8.5 30.2 46.7 92.3 

2027 8.8 30.9 47.5 94.2 

2028 9.1 31.5 48.4 96.2 

2029 9.4 32.1 49.2 98.1 

2030 9.7 32.8 50.0 100.0 

2031 10.0 33.4 50.9 102.0 

2032 10.3 34.1 51.7 103.9 

2033 10.6 34.7 52.5 105.8 

2034 10.9 35.4 53.4 107.8 

2035 11.2 36.0 54.2 109.7 

2036 11.5 36.7 55.0 111.6 

2037 11.8 37.3 55.9 113.6 

2038 12.1 37.9 56.7 115.5 

2039 12.4 38.6 57.5 117.4 

2040 12.7 39.2 58.4 119.3 

2041 13.0 39.8 59.0 121.0 

2042 13.3 40.4 59.7 122.7 

2043 13.6 40.9 60.4 124.4 

2044 13.9 41.5 61.0 126.1 

2045 14.2 42.1 61.7 127.8 

2046 14.5 42.6 62.4 129.4 

2047 14.8 43.2 63.0 131.1 

2048 15.1 43.8 63.7 132.8 

2049 15.4 44.4 64.4 134.5 

2050 15.7 44.9 65.0 136.2 39 



 

 

            

               

              

 

     

 

               

                

                

                 

               

                 

                  

                

              

 

                  

                  

      

 

               

                   

               

                   

                  

   

 

                

                

                

             

                  

                

                  

    

                                                           
                    

                  

                  

                    

                   

          

                     

     

This Appendix also provides additional technical information about the non-CO2 emission projections 

used in the modeling and the method for extrapolating emissions forecasts through 2300, and shows 

the full distribution of 2010 SCC estimates by model and scenario combination. 

1. Other (non-CO2) gases 

In addition to fossil and industrial CO2 emissions, each EMF scenario provides projections of methane 

(CH4), nitrous oxide (N2O), fluorinated gases, and net land use CO2 emissions to 2100. These 

assumptions are used in all three IAMs while retaining each model’s default radiative forcings (RF) due 

to other factors (e.g., aerosols and other gases). Specifically, to obtain the RF associated with the non-

CO2 EMF emissions only, we calculated the RF associated with the EMF atmospheric CO2 concentrations 

and subtracted them from the EMF total RF.30 This approach respects the EMF scenarios as much as 

possible and at the same time takes account of those components not included in the EMF projections. 

Since each model treats non-CO2 gases differently (e.g., DICE lumps all other gases into one composite 

exogenous input), this approach was applied slightly differently in each of the models. 

FUND: Rather than relying on RF for these gases, the actual emissions from each scenario were used in 

FUND. The model default trajectories for CH4, N20, SF6, and the CO2 emissions from land were replaced 

with the EMF values. 

PAGE: PAGE models CO2, CH4, sulfur hexafluoride (SF6), and aerosols and contains an "excess forcing" 

vector that includes the RF for everything else. To include the EMF values, we removed the default CH4 

and SF6 factors31, decomposed the excess forcing vector, and constructed a new excess forcing vector 

that includes the EMF RF for CH4, N20, and fluorinated gases, as well as the model default values for 

aerosols and other factors. Net land use CO2 emissions were added to the fossil and industrial CO2 

emissions pathway. 

DICE: DICE presents the greatest challenge because all forcing due to factors other than industrial CO2 

emissions is embedded in an exogenous non-CO2 RF vector. To decompose this exogenous forcing path 

into EMF non-CO2 gases and other gases, we relied on the references in DICE2007 to the 

Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) and the discussion 

of aerosol forecasts in the IPCC’s Third Assessment Report (TAR) and in AR4, as explained below. In 

DICE2007, Nordhaus assumes that exogenous forcing from all non-CO2 sources is -0.06 W/m2 in 2005, as 

reported in AR4, and increases linearly to 0.3 W/m2 in 2105, based on GISS projections, and then stays 

constant after that time. 

30 
Note EMF did not provide CO2 concentrations for the IMAGE reference scenario. Thus, for this scenario, we fed 

the fossil, industrial and land CO2 emissions into MAGICC (considered a "neutral arbiter" model, which is tuned to 

emulate the major global climate models) and the resulting CO2 concentrations were used. Note also that MERGE 

assumes a neutral biosphere so net land CO2 emissions are set to zero for all years for the MERGE Optimistic 

reference scenario, and for the MERGE component of the average 550 scenario (i.e., we add up the land use 

emissions from the other three models and divide by 4). 
31 

Both the model default CH4 emissions and the initial atmospheric CH4 is set to zero to avoid double counting the 

effect of past CH4 emissions. 

40 



 

 

                 

                      

                   

                    

 

                

     

 

                   

     

                 

               

     

 

                     

                

                  

                   

                  

                

  

 

               

              

                

 

                  

                 

                 

                 

              

                 

           

 

                                                           
        

                 

           

                    

                

                   

            

 

According to AR4, the RF in 2005 from CH4, N20, and halocarbons (approximately similar to the F-gases 

in the EMF-22 scenarios) was 0.48 + 0.16 + 0.34 = 0.98 W/m2 and RF from total aerosols was -1.2 W/m2. 

Thus, the -.06 W/m2 non-CO2 forcing in DICE can be decomposed into: 0.98 W/m2 due to the EMF non-

CO2 gases, -1.2 W/m2 due to aerosols, and the remainder, 0.16 W/m2, due to other residual forcing. 

For subsequent years, we calculated the DICE default RF from aerosols and other non-CO2 gases based 

on the following two assumptions: 

(1) RF from aerosols declines linearly from 2005 to 2100 at the rate projected by the TAR and then 

stays constant thereafter, and 

(2) With respect to RF from non-CO2 gases not included in the EMF-22 scenarios, the share of non-

aerosol RF matches the share implicit in the AR4 summary statistics cited above and remains 

constant over time. 

Assumption (1) means that the RF from aerosols in 2100 equals 66 percent of that in 2000, which is the 

fraction of the TAR projection of total RF from aerosols (including sulfates, black carbon, and organic 

carbon) in 2100 vs. 2000 under the A1B SRES emissions scenario. Since the SRES marker scenarios were 

not updated for the AR4, the TAR provides the most recent IPCC projection of aerosol forcing. We rely 

on the A1B projection from the TAR because it provides one of the lower aerosol forecasts among the 

SRES marker scenarios and is more consistent with the AR4 discussion of the post-SRES literature on 

aerosols: 

Aerosols have a net cooling effect and the representation of aerosol and aerosol precursor emissions, 

including sulphur dioxide, black carbon and organic carbon, has improved in the post-SRES scenarios. 

Generally, these emissions are projected to be lower than reported in SRES. {WGIII 3.2, TS.3, SPM}.
32 

Assuming a simple linear decline in aerosols from 2000 to 2100 also is more consistent with the recent 

literature on these emissions. For example, Figure A1 shows that the sulfur dioxide emissions peak over 

the short-term of some SRES scenarios above the upper bound estimates of the more recent scenarios.33 

Recent scenarios project sulfur emissions to peak earlier and at lower levels compared to the SRES in 

part because of new information about present and planned sulfur legislation in some developing 

countries, such as India and China.34 The lower bound projections of the recent literature have also 

shifted downward slightly compared to the SRES scenario (IPCC 2007). 

32 
AR4 Synthesis Report, p. 44, http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
�

33 
See Smith, S.J., R. Andres, E. Conception, and J. Lurz, 2004: Historical sulfur dioxide emissions, 1850-2000:
�

methods and results. Joint Global Research Institute, College Park, 14 pp.
�
34 

See Carmichael, G., D. Streets, G. Calori, M. Amann, M. Jacobson, J. Hansen, and H. Ueda, 2002: Changing trends
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With these assumptions, the DICE aerosol forcing changes from -1.2 in 2005 to -0.792 in 2105 W/m2; 

forcing due to other non-CO2 gases not included in the EMF scenarios declines from 0.160 to 0.153 

W/m2. 
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Figure A1: Sulphur Dioxide Emission Scenarios
­

. 

Notes: Thick colored lines depict the four SRES marker scenarios and black dashed lines show the median, 
th th 

5 and 95 percentile of the frequency distribution for the full ensemble of 40 SRES scenarios. The blue
�
area (and the thin dashed lines in blue) illustrates individual scenarios and the range of Smith et al. (2004).
�
Dotted lines indicate the minimum and maximum of SO2 emissions scenarios developed pre-SRES.
�
Source: IPCC (2007), AR4 WGIII 3.2, http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch3-ens3-2-

2-4.html. 

Although other approaches to decomposing the DICE exogenous forcing vector are possible, initial 

sensitivity analysis suggests that the differences among reasonable alternative approaches are likely to 

be minor. For example, adjusting the TAR aerosol projection above to assume that aerosols will be 

maintained at 2000 levels through 2100 reduces average SCC values (for 2010) by approximately 3 

percent (or less than $2); assuming all aerosols are phased out by 2100 increases average 2010 SCC 

values by 6-7 percent (or $0.50-$3)–depending on the discount rate. These differences increase slightly 

for SCC values in later years but are still well within 10 percent of each other as far out as 2050. 

Finally, as in PAGE, the EMF net land use CO2 emissions are added to the fossil and industrial CO2 

emissions pathway. 

2.	­ Extrapolating Emissions Projections to 2300 

To run each model through 2300 requires assumptions about GDP, population, greenhouse gas 

emissions, and radiative forcing trajectories after 2100, the last year for which these projections are 

available from the EMF-22 models. These inputs were extrapolated from 2100 to 2300 as follows: 

1. Population growth rate declines linearly, reaching zero in the year 2200. 

2. GDP/ per capita growth rate declines linearly, reaching zero in the year 2300. 

3.	�The decline in the fossil and industrial carbon intensity (CO2/GDP) growth rate over 2090-2100 is 

maintained from 2100 through 2300. 

4. Net land use CO2 emissions decline linearly, reaching zero in the year 2200. 

5. Non-CO2 radiative forcing remains constant after 2100. 
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Long run stabilization of GDP per capita was viewed as a more realistic simplifying assumption than a 

linear or exponential extrapolation of the pre-2100 economic growth rate of each EMF scenario. This is 

based on the idea that increasing scarcity of natural resources and the degradation of environmental 

sinks available for assimilating pollution from economic production activities may eventually overtake 

the rate of technological progress. Thus, the overall rate of economic growth may slow over the very 

long run. The interagency group also considered allowing an exponential decline in the growth rate of 

GDP per capita. However, since this would require an additional assumption about how close to zero 

the growth rate would get by 2300, the group opted for the simpler and more transparent linear 

extrapolation to zero by 2300. 

The population growth rate is also assumed to decline linearly, reaching zero by 2200. This assumption 

is reasonably consistent with the United Nations long run population forecast, which estimates global 

population to be fairly stable after 2150 in the medium scenario (UN 2004).35 The resulting range of 

EMF population trajectories (Figure A2) also encompass the UN medium scenario forecasts through 

2300 – global population of 8.5 billion by 2200, and 9 billion by 2300. 

Maintaining the decline in the 2090-2100 carbon intensity growth rate (i.e., CO2 per dollar of GDP) 

through 2300 assumes that technological improvements and innovations in the areas of energy 

efficiency and other carbon reducing technologies (possibly including currently unavailable methods) 

will continue to proceed at roughly the same pace that is projected to occur towards the end of the 

forecast period for each EMF scenario. This assumption implies that total cumulative emissions in 2300 

will be between 5,000 and 12,000 GtC, which is within the range of the total potential global carbon 

stock estimated in the literature. 

Net land use CO2 emissions are expected to stabilize in the long run, so in the absence of any post 2100 

projections, the group assumed a linear decline to zero by 2200. Given no a priori reasons for assuming 

a long run increase or decline in non-CO2 radiative forcing, it is assumed to remain at the 2100 levels for 

each EMF scenario through 2300. 

Figures A2-A7 show the paths of global population, GDP, fossil and industrial CO2 emissions, net land 

CO2 emissions, non-CO2 radiative forcing, and CO2 intensity (fossil and industrial CO2 emissions/GDP) 

resulting from these assumptions. 

35 
United Nations. 2004. World Population to 2300. 

http://www.un.org/esa/population/publications/longrange2/worldpop2300final.pdf 
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Figure A2. Global Population, 2000-2300 (Post-2100 extrapolations assume the population growth
­

rate changes linearly to reach a zero growth rate by 2200.)
­
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Note: In the fifth scenario, 2000-2100 population is equal to the average of the population under the 550 ppm 

CO2e, full-participation, not-to-exceed scenarios considered by each of the four models. 

Figure A3. World GDP, 2000-2300 (Post-2100 extrapolations assume GDP per capita growth declines 

linearly, reaching zero in the year 2300) 
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Note: In the fifth scenario, 2000-2100 GDP is equal to the average of the GDP under the 550 ppm CO2e, full-

participation, not-to-exceed scenarios considered by each of the four models. 

45 



 

            

            

 

 
 

 

 
                   

              

 

             

        

 

 
 

 
 

 
                   

             

                                                           
                      

                   

           

Figure A4. Global Fossil and Industrial CO2 Emissions, 2000-2300 (Post-2100 extrapolations assume 

growth rate of CO2 intensity (CO2/GDP) over 2090-2100 is maintained through 2300.) 
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Note: In the fifth scenario, 2000-2100 emissions are equal to the average of the emissions under the 550 ppm 

CO2e, full-participation, not-to-exceed scenarios considered by each of the four models. 

Figure A5. Global Net Land Use CO2 Emissions, 2000-2300 (Post-2100 extrapolations assume emissions 

decline linearly, reaching zero in the year 2200)36 
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Note: In the fifth scenario, 2000-2100 emissions are equal to the average of the emissions under the 550 ppm 

CO2e, full-participation, not-to-exceed scenarios considered by each of the four models. 

36 MERGE assumes a neutral biosphere so net land CO2 emissions are set to zero for all years for the MERGE 

Optimistic reference scenario, and for the MERGE component of the average 550 scenario (i.e., we add up the land 

use emissions from the other three models and divide by 4). 
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Figure A6. Global Non-CO2 Radiative Forcing, 2000-2300 (Post-2100 extrapolations assume constant 

non-CO2 radiative forcing after 2100.) 
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Note: In the fifth scenario, 2000-2100 emissions are equal to the average of the emissions under the 550 ppm 

CO2e, full-participation, not-to-exceed scenarios considered by each of the four models. 

Figure A7. Global CO2 Intensity (fossil & industrial CO2 emissions/GDP), 2000-2300 (Post-2100 

extrapolations assume decline in CO2/GDP growth rate over 2090-2100 is maintained through 2300.) 
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Note: In the fifth scenario, 2000-2100 emissions are equal to the average of the emissions under the 550 ppm 

CO2e, full-participation, not-to-exceed scenarios considered by each of the four models. 

47 



   

 

 

             

           

  

           

            

           

            

            

           

  

           

            

           

            

            

           

  

           

            

           

            

            

 

             

           

  

           

            

           

            

            

           

  

           

            

           

            

            

           

  

           

            

           

            

            

 

Table A2. 2010 Global SCC Estimates at 2.5 Percent Discount Rate (2007$/ton CO2) 

Percentile 1st 5th 10th 25th 50th Avg 75th 90th 95th 99th 

Scenario PAGE 

IMAGE 3.3 5.9 8.1 13.9 28.8 65.5 68.2 147.9 239.6 563.8 

MERGE optimistic 1.9 3.2 4.3 7.2 14.6 34.6 36.2 79.8 124.8 288.3 

Message 2.4 4.3 5.8 9.8 20.3 49.2 50.7 114.9 181.7 428.4 

MiniCAM base 2.7 4.6 6.4 11.2 22.8 54.7 55.7 120.5 195.3 482.3 

5th scenario 2.0 3.5 4.7 8.1 16.3 42.9 41.5 103.9 176.3 371.9 

Scenario DICE 

IMAGE 16.4 21.4 25 33.3 46.8 54.2 69.7 96.3 111.1 130.0 

MERGE optimistic 9.7 12.6 14.9 19.7 27.9 31.6 40.7 54.5 63.5 73.3 

Message 13.5 17.2 20.1 27 38.5 43.5 55.1 75.8 87.9 103.0 

MiniCAM base 13.1 16.7 19.8 26.7 38.6 44.4 56.8 79.5 92.8 109.3 

5th scenario 10.8 14 16.7 22.2 32 37.4 47.7 67.8 80.2 96.8 

Scenario FUND 

IMAGE -33.1 -18.9 -13.3 -5.5 4.1 19.3 18.7 43.5 67.1 150.7 

MERGE optimistic -33.1 -14.8 -10 -3 5.9 14.8 20.4 43.9 65.4 132.9 

Message -32.5 -19.8 -14.6 -7.2 1.5 8.8 13.8 33.7 52.3 119.2 

MiniCAM base -31.0 -15.9 -10.7 -3.4 6 22.2 21 46.4 70.4 152.9 

5th scenario -32.2 -21.6 -16.7 -9.7 -2.3 3 6.7 20.5 34.2 96.8 

Table A3. 2010 Global SCC Estimates at 3 Percent Discount Rate (2007$/ton CO2) 

Percentile 1st 5th 10th 25th 50th Avg 75th 90th 95th 99th 

Scenario PAGE 

IMAGE 2.0 3.5 4.8 8.1 16.5 39.5 41.6 90.3 142.4 327.4 

MERGE optimistic 1.2 2.1 2.8 4.6 9.3 22.3 22.8 51.3 82.4 190.0 

Message 1.6 2.7 3.6 6.2 12.5 30.3 31 71.4 115.6 263.0 

MiniCAM base 1.7 2.8 3.8 6.5 13.2 31.8 32.4 72.6 115.4 287.0 

5th scenario 1.3 2.3 3.1 5 9.6 25.4 23.6 62.1 104.7 222.5 

Scenario DICE 

IMAGE 11.0 14.5 17.2 22.8 31.6 35.8 45.4 61.9 70.8 82.1 

MERGE optimistic 7.1 9.2 10.8 14.3 19.9 22 27.9 36.9 42.1 48.8 

Message 9.7 12.5 14.7 19 26.6 29.8 37.8 51.1 58.6 67.4 

MiniCAM base 8.8 11.5 13.6 18 25.2 28.8 36.9 50.4 57.9 67.8 

5th scenario 7.9 10.1 11.8 15.6 21.6 24.9 31.8 43.7 50.8 60.6 

Scenario FUND 

IMAGE -25.2 -15.3 -11.2 -5.6 0.9 8.2 10.4 25.4 39.7 90.3 

MERGE optimistic -24.0 -12.4 -8.7 -3.6 2.6 8 12.2 27 41.3 85.3 

Message -25.3 -16.2 -12.2 -6.8 -0.5 3.6 7.7 20.1 32.1 72.5 

MiniCAM base -23.1 -12.9 -9.3 -4 2.4 10.2 12.2 27.7 42.6 93.0 

5th scenario -24.1 -16.6 -13.2 -8.3 -3 -0.2 2.9 11.2 19.4 53.6 
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Table A4. 2010 Global SCC Estimates at 5 Percent Discount Rate (2007$/ton CO2) 

Percentile 1st 5th 10th 25th 50th Avg 75th 90th 95th 99th 

Scenario PAGE 

IMAGE 0.5 0.8 1.1 1.8 3.5 8.3 8.5 19.5 31.4 67.2 

MERGE optimistic 0.3 0.5 0.7 1.2 2.3 5.2 5.4 12.3 19.5 42.4 

Message 0.4 0.7 0.9 1.6 3 7.2 7.2 17 28.2 60.8 

MiniCAM base 0.3 0.6 0.8 1.4 2.7 6.4 6.6 15.9 24.9 52.6 

5th scenario 0.3 0.6 0.8 1.3 2.3 5.5 5 12.9 22 48.7 

Scenario DICE 

IMAGE 4.2 5.4 6.2 7.6 10 10.8 13.4 16.8 18.7 21.1 

MERGE optimistic 2.9 3.7 4.2 5.3 7 7.5 9.3 11.7 12.9 14.4 

Message 3.9 4.9 5.5 7 9.2 9.8 12.2 15.4 17.1 18.8 

MiniCAM base 3.4 4.2 4.7 6 7.9 8.6 10.7 13.5 15.1 16.9 

5th scenario 3.2 4 4.6 5.7 7.6 8.2 10.2 12.8 14.3 16.0 

Scenario FUND 

IMAGE -11.7 -8.4 -6.9 -4.6 -2.2 -1.3 0.7 4.1 7.4 17.4 

MERGE optimistic -10.6 -7.1 -5.6 -3.6 -1.3 -0.3 1.6 5.4 9.1 19.0 

Message -12.2 -8.9 -7.3 -4.9 -2.5 -1.9 0.3 3.5 6.5 15.6 

MiniCAM base -10.4 -7.2 -5.8 -3.8 -1.5 -0.6 1.3 4.8 8.2 18.0 

5th scenario -10.9 -8.3 -7 -5 -2.9 -2.7 -0.8 1.4 3.2 9.2 

Figure A8. Histogram of Global SCC Estimates in 2010 (2007$/ton CO2), by discount rate 
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* The distribution of SCC values ranges from -$5,192 to $66,116 but the X-axis has been truncated at 
st th 

approximately the 1 and 99 percentiles to better show the data. 
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Executive Summary  

 Under Executive Order 12866, agencies are required, to the extent permitted by law, “to assess both 

the costs and the benefits of the intended regulation and, recognizing that some costs and benefits are 

difficult to quantify, propose or adopt a regulation only upon a reasoned determination that the 

benefits of the intended regulation justify its costs.” The purpose of the “social cost of carbon” (SCC) 

estimates presented here is to allow agencies to incorporate the social benefits of reducing carbon 

dioxide (CO2) emissions into cost-benefit analyses of regulatory actions that impact cumulative global 

emissions. The SCC is an estimate of the monetized damages associated with an incremental increase in 

carbon emissions in a given year. It is intended to include (but is not limited to) changes in net 

agricultural productivity, human health, property damages from increased flood risk, and the value of 

ecosystem services due to climate change. 

The interagency process that developed the original U.S. government’s SCC estimates is described in the 

2010 interagency technical support document (TSD) (Interagency Working Group on Social Cost of 

Carbon 2010).  Through that process the interagency group selected four SCC values for use in 

regulatory analyses. Three values are based on the average SCC from three integrated assessment 

models (IAMs), at discount rates of 2.5, 3, and 5 percent. The fourth value, which represents the 95th 

percentile SCC estimate across all three models at a 3 percent discount rate, is included to represent 

higher-than-expected impacts from temperature change further out in the tails of the SCC distribution. 

While acknowledging the continued limitations of the approach taken by the interagency group in 2010, 

this document provides an update of the SCC estimates based on new versions of each IAM (DICE, PAGE, 

and FUND). It does not revisit other interagency modeling decisions (e.g., with regard to the discount 

rate, reference case socioeconomic and emission scenarios, or equilibrium climate sensitivity). 

Improvements in the way damages are modeled are confined to those that have been incorporated into 

the latest versions of the models by the developers themselves in the peer-reviewed literature.   

The SCC estimates using the updated versions of the models are higher than those reported in the 2010 

TSD.  By way of comparison, the four 2020 SCC estimates reported in the 2010 TSD were $7, $26, $42 

and $81 (2007$). The corresponding four updated SCC estimates for 2020 are $12, $43, $64, and $128 

(2007$).  The model updates that are relevant to the SCC estimates include: an explicit representation of 

sea level rise damages in the DICE and PAGE models;  updated adaptation assumptions, revisions to 

ensure damages are constrained by GDP, updated regional scaling of damages, and a revised treatment 

of potentially abrupt shifts in climate damages in the PAGE model; an updated carbon cycle in the DICE 

model; and updated damage functions for sea level rise impacts, the agricultural sector, and reduced 

space heating requirements, as well as changes to the transient response of temperature to the buildup 

of GHG concentrations and the inclusion of indirect effects of methane emissions in the FUND model.    

The SCC estimates vary by year, and the  following table summarizes the revised SCC estimates from 

2010 through 2050. 
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Revised Social Cost of CO2, 2010 – 2050 (in 2007 dollars per metric ton of CO2) 

Discount Rate 5.0% 3.0% 2.5% 3.0% 
Year Avg Avg Avg 95th 
2010 11 32 51 89 
2015 11 37 57 109 
2020 12 43 64 128 
2025 14 47 69 143 
2030 16 52 75 159 
2035 19 56 80 175 
2040 21 61 86 191 
2045 24 66 92 206 
2050 26 71 97 220 
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I. Purpose  

The purpose of this document is to update the schedule of social cost of carbon (SCC) estimates from 

the 2010 interagency technical support document (TSD) (Interagency Working Group on Social Cost of 

Carbon 2010).1 E.O. 13563 commits the Administration to regulatory decision making “based on the best 

available science.”2  Additionally, the interagency group recommended in 2010 that the SCC estimates 

be revisited on a regular basis or as model updates that reflect the growing body of scientific and 

economic knowledge become available.3  New versions of the three integrated assessment models used 

by the U.S. government to estimate the SCC (DICE, FUND, and PAGE), are now available and have been 

published in the peer reviewed literature. While acknowledging the continued limitations of the 

approach taken by the interagency group in 2010 (documented in the original 2010 TSD), this document 

provides an update of the SCC estimates based on the latest peer-reviewed version of the models, 

replacing model versions that were developed up to ten years ago in a rapidly evolving field. It does not 

revisit other assumptions with regard to the discount rate, reference case socioeconomic and emission 

scenarios, or equilibrium climate sensitivity. Improvements in the way damages are modeled are 

confined to those that have been incorporated into the latest versions of the models by the developers 

themselves in the peer-reviewed literature. The agencies participating in the interagency working group 

continue to investigate potential improvements to the way in which economic damages associated with 

changes in CO2 emissions are quantified.  

Section II summarizes the major updates relevant to SCC estimation that are contained in the new 

versions of the integrated assessment models released since the 2010 interagency report. Section III 

presents the updated schedule of SCC estimates for 2010 – 2050 based on these versions of the models. 

Section IV provides a discussion of other model limitations and research gaps. 

II. Summary of Model Updates 

This section briefly summarizes changes to the most recent versions of the three integrated assessment 

models (IAMs) used by the interagency group in 2010. We focus on describing those model updates that 

are relevant to estimating the social cost of carbon, as summarized in Table 1. For example, both the 

DICE and PAGE models now include an explicit representation of sea level rise damages. Other revisions 

to PAGE include: updated adaptation assumptions, revisions to ensure damages are constrained by GDP, 

updated regional scaling of damages, and a revised treatment of potentially abrupt shifts in climate 

damages.  The DICE model’s simple carbon cycle has been updated to be more consistent with a more 

complex climate model. The FUND model includes updated damage functions for sea level rise impacts, 

the agricultural sector, and reduced space heating requirements, as well as changes to the transient 

response of temperature to the buildup of GHG concentrations and the inclusion of indirect effects of 

                                                            
1  In this document, we present all values of the SCC as the cost per metric ton of CO2 emissions. Alternatively, one 
could report the SCC as the cost per metric ton of carbon emissions. The multiplier for translating between mass of 
CO2 and the mass of carbon is 3.67 (the molecular weight of CO2 divided by the molecular weight of carbon = 
44/12 = 3.67). 
2 http://www.whitehouse.gov/sites/default/files/omb/inforeg/eo12866/eo13563_01182011.pdf 
3 See p. 1, 3, 4, 29, and 33 (Interagency Working Group on Social Cost of Carbon 2010). 
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methane emissions. Changes made to parts of the models that are superseded by the interagency 

working group’s modeling assumptions – regarding equilibrium climate sensitivity, discounting, and 

socioeconomic variables – are not discussed here but can be found in the references provided in each 

section below. 

Table 1: Summary of Key Model Revisions Relevant to the Interagency SCC 

IAM  Version used in 
2010 Interagency 

Analysis  

New 
Version  

Key changes relevant to interagency SCC  

DICE  2007  2010  Updated calibration of the carbon cycle model and 
explicit representation of sea level rise (SLR) and 
associated damages.  

FUND  3.5  
(2009)  

3.8 
(2012)  

Updated damage functions for space heating, SLR, 
agricultural impacts, changes to transient response of 
temperature to buildup of GHG concentrations, and 
inclusion of indirect climate effects of methane.  

PAGE  2002  2009  Explicit representation of SLR damages, revisions to 
damage function to ensure damages do not exceed 
100% of GDP, change in regional scaling of damages, 
revised treatment of potential abrupt damages, and 
updated adaptation assumptions.  

 
 

A. DICE 

DICE 2010 includes a number of changes over the previous 2007 version used in the 2010 interagency 

report. The model changes that are relevant for the SCC estimates developed by the interagency 

working group include: 1) updated parameter values for the carbon cycle model, 2) an explicit 

representation of sea level dynamics, and 3) a re-calibrated damage function that includes an explicit 

representation of economic damages from sea level rise. Changes were also made to other parts of the 

DICE model—including the equilibrium climate sensitivity parameter, the rate of change of total factor 

productivity, and the elasticity of the marginal utility of consumption—but these components of DICE 

are superseded by the interagency working group’s assumptions and so will not be discussed here. More 

details on DICE2007 can be found in Nordhaus (2008) and on DICE2010 in Nordhaus (2010).  The 

DICE2010 model and documentation is also available for download from the homepage of William 

Nordhaus. 

Carbon Cycle Parameters 

DICE uses a three-box model of carbon stocks and flows to represent the accumulation and transfer of 

carbon among the atmosphere, the shallow ocean and terrestrial biosphere, and the deep ocean. These 

parameters are “calibrated to match the carbon cycle in the Model for the Assessment of Greenhouse 
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Gas Induced Climate Change (MAGICC)” (Nordhaus 2008 p 44).4 Carbon cycle transfer coefficient values 

in DICE2010 are based on re-calibration of the model to match the newer 2009 version of MAGICC 

(Nordhaus 2010 p 2). For example, in DICE2010, in each decade, 12 percent of the carbon in the 

atmosphere is transferred to the shallow ocean, 4.7 percent of the carbon in the shallow ocean is 

transferred to the atmosphere, 94.8 percent remains in the shallow ocean, and 0.5 percent is 

transferred to the deep ocean. For comparison, in DICE 2007, 18.9 percent of the carbon in the 

atmosphere is transferred to the shallow ocean each decade, 9.7 percent of the carbon in the shallow 

ocean is transferred to the atmosphere, 85.3 percent remains in the shallow ocean, and 5 percent is 

transferred to the deep ocean. 

 

The implication of these changes for DICE2010 is in general a weakening of the ocean as a carbon sink 

and therefore a higher concentration of carbon in the atmosphere than in DICE2007, for a given path of 

emissions. All else equal, these changes will generally increase the level of warming and therefore the 

SCC estimates in DICE2010 relative to those from DICE2007. 

Sea Level Dynamics 

A new feature of DICE2010 is an explicit representation of the dynamics of the global average sea level 

anomaly to be used in the updated damage function (discussed below). This section contains a brief 

description of the sea level rise (SLR) module; a more detailed description can be found on the model 

developer’s website.5  The average global sea level anomaly is modeled as the sum of four terms that 

represent contributions from: 1) thermal expansion of the oceans, 2) melting of glaciers and small ice 

caps, 3) melting of the Greenland ice sheet, and 4) melting of the Antarctic ice sheet.  

The parameters of the four components of the SLR module are calibrated to match consensus results 

from the IPCC’s Fourth Assessment Report (AR4).6 The rise in sea level from thermal expansion in each 

time period (decade) is 2 percent of the difference between the sea level in the previous period and the 

long run equilibrium sea level, which is 0.5 meters per degree Celsius (°C) above the average global 

temperature in 1900. The rise in sea level from the melting of glaciers and small ice caps occurs at a rate 

of 0.008 meters per decade per °C above the average global temperature in 1900.  

The contribution to sea level rise from melting of the Greenland ice sheet is more complex. The 

equilibrium contribution to SLR is 0 meters for temperature anomalies less than 1 oC and increases 

linearly from 0 meters to a maximum of 7.3 meters for temperature anomalies between 1 oC and 3.5 °C. 

The contribution to SLR in each period is proportional to the difference between the previous period’s 

sea level anomaly and the equilibrium sea level anomaly, where the constant of proportionality 

increases with the temperature anomaly in the current period. 

                                                            
4 MAGICC is a simple climate model initially developed by the U.S. National Center for Atmospheric Research that 
has been used heavily by the Intergovernmental Panel on Climate Change (IPCC) to emulate projections from more 
sophisticated state of the art earth system simulation models (Randall et al. 2007). 
5 Documentation on the new sea level rise module of DICE is available on William Nordhaus’ website at: 
http://nordhaus.econ.yale.edu/documents/SLR_021910.pdf. 
6 For a review of post-IPCC AR4 research on sea level rise, see Nicholls et al. (2011) and NAS (2011).  
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The contribution to SLR from the melting of the Antarctic ice sheet is -0.001 meters per decade when 

the temperature anomaly is below 3 °C and increases linearly between 3 °C and 6 °C to a maximum rate 

of 0.025 meters per decade at a temperature anomaly of 6 °C. 

Re-calibrated Damage Function 

Economic damages from climate change in the DICE model are represented by a fractional loss of gross 

economic output in each period. A portion of the remaining economic output in each period (net of 

climate change damages) is consumed and the remainder is invested in the physical capital stock to 

support future economic production, so each period’s climate damages will reduce consumption in that 

period and in all future periods due to the lost investment. The fraction of output in each period that is 

lost due to climate change impacts is represented as one minus a fraction, which is one divided by a 

quadratic function of the temperature anomaly, producing a sigmoid (“S”-shaped) function.7 The loss 

function in DICE2010 has been expanded by adding a quadratic function of SLR to the quadratic function 

of temperature. In DICE2010 the temperature anomaly coefficients have been recalibrated to avoid 

double-counting damages from sea level rise that were implicitly included in these parameters in 

DICE2007.  

The aggregate damages in DICE2010 are illustrated by Nordhaus (2010 p 3), who notes that “…damages 

in the uncontrolled (baseline) [i.e., reference] case … in 2095 are $12 trillion, or 2.8 percent of global 

output, for a global temperature increase of 3.4 oC above 1900 levels.”  This compares to a loss of 3.2 

percent of global output at 3.4 oC in DICE2007. However, in DICE2010, annual damages are lower in 

most of the early periods of the modeling horizon but higher in later periods than would be calculated 

using the DICE2007 damage function. Specifically, the percent difference between damages in the base 

run of DICE2010 and those that would be calculated using the DICE2007 damage function starts at +7 

percent in 2005, decreases to a low of -14 percent in 2065, then continuously increases to +20 percent 

by 2300 (the end of the interagency analysis time horizon), and to +160 percent by the end of the model 

time horizon in 2595. The large increases in the far future years of the time horizon are due to the 

permanence associated with damages from sea level rise, along with the assumption that the sea level is 

projected to continue to rise long after the global average temperature begins to decrease.  The changes 

to the loss function generally decrease the interagency working group SCC estimates slightly given that 

relative increases in damages in later periods are discounted more heavily, all else equal. 

B. FUND 

FUND version 3.8 includes a number of changes over the previous version 3.5 (Narita et al. 2010) used in 

the 2010 interagency report. Documentation supporting FUND and the model’s source code for all 

versions of the model is available from the model authors.8 Notable changes, due to their impact on the 

                                                            
7 The model and documentation, including formulas, are available on the author’s 
webpage at http://www.econ.yale.edu/~nordhaus/homepage/RICEmodels.htm. 
8 http://www.fund-model.org/.  This report uses version 3.8 of the FUND model, which represents a modest update 
to the most recent version of the model to appear in the literature (version 3.7) (Anthoff and Tol, 2013a).  For the 
purpose of computing the SCC, the relevant changes (between 3.7 to 3.8) are associated with improving 

http://www.econ.yale.edu/~nordhaus/homepage/RICEmodels.htm
http://www.fund-model.org/
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SCC estimates, are adjustments to the space heating, agriculture, and sea level rise damage functions in 

addition to changes to the temperature response function and the inclusion of indirect effects from 

methane emissions.9 We discuss each of these in turn. 

Space Heating 

In FUND, the damages associated with the change in energy needs for space heating are based on the 

estimated impact due to one degree of warming. These baseline damages are scaled based on the 

forecasted temperature anomaly’s deviation from the one degree benchmark and adjusted for changes 

in vulnerability due to economic and energy efficiency growth. In FUND 3.5, the function that scales the 

base year damages adjusted for vulnerability allows for the possibility that in some simulations the 

benefits associated with reduced heating needs may be an unbounded convex function of the 

temperature anomaly. In FUND 3.8, the form of the scaling has been modified to ensure that the 

function is everywhere concave and that there will exist an upper bound on the benefits a region may 

receive from reduced space heating needs. The new formulation approaches a value of two in the limit 

of large temperature anomalies, or in other words, assuming no decrease in vulnerability, the reduced 

expenditures on space heating at any level of warming will not exceed two times the reductions 

experienced at one degree of warming. Since the reduced need for space heating represents a benefit of 

climate change in the model, or a negative damage, this change will increase the estimated SCC. This 

update accounts for a significant portion of the difference in the expected SCC estimates reported by 

the two versions of the model when run probabilistically. 

Sea Level Rise and Land Loss 

The FUND model explicitly includes damages associated with the inundation of dry land due to sea level 

rise. The amount of land lost within a region is dependent upon the proportion of the coastline being 

protected by adequate sea walls and the amount of sea level rise. In FUND 3.5 the function defining the 

potential land lost in a given year due to sea level rise is linear in the rate of sea level rise for that year. 

This assumption implicitly assumes that all regions are well represented by a homogeneous coastline in 

length and a constant uniform slope moving inland. In FUND 3.8 the function defining the potential land 

lost has been changed to be a convex function of sea level rise, thereby assuming that the slope of the 

shore line increases moving inland. The effect of this change is to typically reduce the vulnerability of 

some regions to sea level rise based land loss, thereby lowering the expected SCC estimate. 10   

Agriculture 

                                                                                                                                                                                                
consistency with IPCC AR4 by adjusting the atmospheric lifetimes of CH4 and N2O and incorporating the indirect 
forcing effects of CH4, along with making minor stability improvements in the sea wall construction algorithm. 
9 The other damage sectors (water resources, space cooling, land loss, migration, ecosystems, human health, and 
extreme weather) were not significantly updated. 
10 For stability purposes this report also uses an update to the model which assumes that regional coastal 
protection measures will be built to protect the most valuable land first, such that the marginal benefits of coastal 
protection is decreasing in the level of protection following Fankhauser (1995). 
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In FUND, the damages associated with the agricultural sector are measured as proportional to the 

sector’s value. The fraction is bounded from above by one and is made up of three additive components 

that represent the effects from carbon fertilization, the rate of temperature change, and the level of the 

temperature anomaly. In both FUND 3.5 and FUND 3.8, the fraction of the sector’s value lost due to the 

level of the temperature anomaly is modeled as a quadratic function with an intercept of zero. In FUND 

3.5, the coefficients of this loss function are modeled as the ratio of two random normal variables. This 

specification had the potential for unintended extreme behavior as draws from the parameter in the 

denominator approached zero or went negative. In FUND 3.8, the coefficients are drawn directly from 

truncated normal distributions so that they remain in the range [0, )  and ( ,0] , respectively, 

ensuring the correct sign and eliminating the potential for divide by zero errors.  The means for the new 

distributions are set equal to the ratio of the means from the normal distributions used in the previous 

version. In general the impact of this change has been to decrease the range of the distribution while 

spreading out the distributions’ mass over the remaining range relative to the previous version. The net 

effect of this change on the SCC estimates is difficult to predict.  

Transient Temperature Response  

The temperature response model translates changes in global levels of radiative forcing into the current 

expected temperature anomaly. In FUND, a given year’s increase in the temperature anomaly is based 

on a mean reverting function where the mean equals the equilibrium temperature anomaly that would 

eventually be reached if that year’s level of radiative forcing were sustained. The rate of mean reversion 

defines the rate at which the transient temperature approaches the equilibrium. In FUND 3.5, the rate 

of temperature response is defined as a decreasing linear function of equilibrium climate sensitivity to 

capture the fact that the progressive heat uptake of the deep ocean causes the rate to slow at higher 

values of the equilibrium climate sensitivity. In FUND 3.8, the rate of temperature response has been 

updated to a quadratic function of the equilibrium climate sensitivity. This change reduces the sensitivity 

of the rate of temperature response to the level of the equilibrium climate sensitivity, a relationship first 

noted by Hansen et al. (1985) based on the heat uptake of the deep ocean. Therefore in FUND 3.8, the 

temperature response will typically be faster than in the previous version. The overall effect of this 

change is likely to increase estimates of the SCC as higher temperatures are reached during the 

timeframe analyzed and as the same damages experienced in the previous version of the model are now 

experienced earlier and therefore discounted less. 

Methane 

The IPCC AR4 notes a series of indirect effects of methane emissions, and has developed methods for 

proxying such effects when computing the global warming potential of methane (Forster et al. 2007). 

FUND 3.8 now includes the same methods for incorporating the indirect effects of methane emissions. 

Specifically, the average atmospheric lifetime of methane has been set to 12 years to account for the 

feedback of methane emissions on its own lifetime. The radiative forcing associated with atmospheric 

methane has also been increased by 40% to account for its net impact on ozone production and 

stratospheric water vapor. All else equal, the effect of this increased radiative forcing will be to increase 

the estimated SCC values, due to greater projected temperature anomaly. 
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C. PAGE 

PAGE09 (Hope 2013) includes a number of changes from PAGE2002, the version used in the 2010 SCC 

interagency report. The changes that most directly affect the SCC estimates include: explicitly modeling 

the impacts from sea level rise, revisions to the damage function to ensure damages are constrained by 

GDP, a change in the regional scaling of damages, a revised treatment for the probability of a 

discontinuity within the damage function, and revised assumptions on adaptation. The model also 

includes revisions to the carbon cycle feedback and the calculation of regional temperatures.11 More 

details on PAGE09 can be found in Hope (2011a, 2011b, 2011c). A description of PAGE2002 can be found 

in Hope (2006).   

Sea Level Rise 

While PAGE2002 aggregates all damages into two categories – economic and non-economic impacts -, 

PAGE09 adds a third explicit category: damages from sea level rise. In the previous version of the model, 

damages from sea level rise were subsumed by the other damage categories. In PAGE09 sea level 

damages increase less than linearly with sea level under the assumption that land, people, and GDP are 

more concentrated in low-lying shoreline areas. Damages from the economic and non-economic sector 

were adjusted to account for the introduction of this new category.  

 Revised Damage Function to Account for Saturation  

In PAGE09, small initial economic and non-economic benefits (negative damages) are modeled for small 

temperature increases, but all regions eventually experience economic damages from climate change, 

where damages are the sum of additively separable polynomial functions of temperature and sea level 

rise. Damages transition from this polynomial function to a logistic path once they exceed a certain 

proportion of remaining Gross Domestic Product (GDP) to ensure that damages do not exceed 100 

percent of GDP. This differs from PAGE2002, which allowed Eastern Europe to potentially experience 

large benefits from temperature increases, and which also did not bound the possible damages that 

could be experienced. 

Regional Scaling Factors 

As in the previous version of PAGE, the PAGE09 model calculates the damages for the European Union 

(EU) and then, assumes that damages for other regions are proportional based on a given scaling factor. 

The scaling factor in PAGE09 is based on the length of a region’s coastline relative to the EU (Hope 

2011b). Because of the long coastline in the EU, other regions are, on average, less vulnerable than the 

EU for the same sea level and temperature increase, but all regions have a positive scaling factor. 

PAGE2002 based its scaling factors on four studies reported in the IPCC’s third assessment report, and 

allowed for benefits from temperature increase in Eastern Europe, smaller impacts in developed 

countries, and higher damages in developing countries.  

                                                            
11 Because several changes in the PAGE model are structural (e.g., the addition of sea level rise and treatment of 
discontinuity), it is not possible to assess the direct impact of each change on the SCC in isolation as done for the 
other two models above. 
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Probability of a Discontinuity 

In PAGE2002, the damages associated with a “discontinuity” (nonlinear extreme event) were modeled 

as an expected value. Specifically, a stochastic probability of a discontinuity was multiplied by the 

damages associated with a discontinuity to obtain an expected value, and this was added to the 

economic and non-economic impacts.  That is, additional damages from an extreme event, such as 

extreme melting of the Greenland ice sheet, were multiplied by the probability of the event occurring 

and added to the damage estimate. In PAGE09, the probability of discontinuity is treated as a discrete 

event for each year in the model. The damages for each model run are estimated either with or without 

a discontinuity occurring, rather than as an expected value. A large‐scale discontinuity becomes possible 

when the temperature rises beyond some threshold value between 2 and 4°C. The probability that a 

discontinuity will occur beyond this threshold then increases by between 10 and 30 percent for every 

1°C rise in temperature beyond the threshold. If a discontinuity occurs, the EU loses an additional 5 to 

25 percent of its GDP (drawn from a triangular distribution with a mean of 15 percent) in addition to 

other damages, and other regions lose an amount determined by the regional scaling factor. The 

threshold value for a possible discontinuity is lower than in PAGE2002, while the rate at which the 

probability of a discontinuity increases with the temperature anomaly and the damages that result from 

a discontinuity are both higher than in PAGE2002. The model assumes that only one discontinuity can 

occur and that the impact is phased in over a period of time, but once it occurs, its effect is permanent. 

Adaptation 

As in PAGE2002, adaptation is available to help mitigate any climate change impacts that occur. In PAGE 

this adaptation is the same regardless of the temperature change or sea level rise and is therefore akin 

to what is more commonly considered a reduction in vulnerability. It is modeled by reducing the 

damages by some percentage. PAGE09 assumes a smaller decrease in vulnerability than the previous 

version of the model and assumes that it will take longer for this change in vulnerability to be realized. 

In the aggregated economic sector, at the time of full implementation, this adaptation will mitigate all 

damages up to a temperature increase of 1°C, and for temperature anomalies between  1°C and 2°C, it 

will reduce damages by 15-30 percent (depending on the region). However, it takes 20 years to fully 

implement this adaptation. In PAGE2002, adaptation was assumed to reduce economic sector damages 

up to 2°C by 50-90 percent after 20 years. Beyond 2°C, no adaptation is assumed to be available to 

mitigate the impacts of climate change. For the non-economic sector, in PAGE09 adaptation is available 

to reduce 15 percent of the damages due to a temperature increase between 0°C and 2°C and is 

assumed to take 40 years to fully implement, instead of 25 percent of the damages over 20 years 

assumed in PAGE2002. Similarly, adaptation is assumed to alleviate 25-50 percent of the damages from 

the first 0.20 to 0.25 meters of sea level rise but is assumed to be ineffective thereafter. Hope (2011c) 

estimates that the less optimistic assumptions regarding the ability to offset impacts of temperature and 

sea level rise via adaptation increase the SCC by approximately 30 percent. 

Other Noteworthy Changes 
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Two other changes in the model are worth noting. There is a change in the way the model accounts for 

decreased CO2 absorption on land and in the ocean as temperature rises. PAGE09 introduces a linear 

feedback from global mean temperature to the percentage gain in the excess concentration of CO2, 

capped at a maximum level. In PAGE2002, an additional amount was added to the CO2 emissions each 

period to account for a decrease in ocean absorption and a loss of soil carbon. Also updated is the 

method by which the average global and annual temperature anomaly is downscaled to determine 

annual average regional temperature anomalies to be used in the regional damage functions. In 

PAGE2002, the scaling was determined solely based on regional difference in emissions of sulfate 

aerosols. In PAGE09, this regional temperature anomaly is further adjusted using an additive factor that 

is based on the average absolute latitude of a region relative to the area weighted average absolute 

latitude of the Earth’s landmass, to capture relatively greater changes in temperature forecast to be 

experienced at higher latitudes. 

 

 

III. Revised SCC Estimates 

The updated versions of the three integrated assessment models were run using the same methodology 

detailed in the 2010 TSD (Interagency Working Group on Social Cost of Carbon 2010). The approach 

along with the inputs for the socioeconomic emissions scenarios, equilibrium climate sensitivity 

distribution, and discount rate remains the same. This includes the five reference scenarios based on the 

EMF-22 modeling exercise, the Roe and Baker equilibrium climate sensitivity distribution calibrated to 

the IPCC AR4, and three constant discount rates of 2.5, 3, and 5 percent. 

As was previously the case, the use of three models, three discount rates, and five scenarios produces 

45 separate distributions for the global SCC. The approach laid out in the 2010 TSD applied equal weight 

to each model and socioeconomic scenario in order to reduce the dimensionality down to three 

separate distributions representative of the three discount rates. The interagency group selected four 

values from these distributions for use in regulatory analysis. Three values are based on the average SCC 

across models and socio-economic-emissions scenarios at the 2.5, 3, and 5 percent discount rates, 

respectively. The fourth value was chosen to represent the higher-than-expected economic impacts 

from climate change further out in the tails of the SCC distribution. For this purpose, the 95th percentile 

of the SCC estimates at a 3 percent discount rate was chosen. (A detailed set of percentiles by model 

and scenario combination and additional summary statistics for the 2020 values is available in the 

Appendix.)  As noted in the 2010 TSD, “the 3 percent discount rate is the central value, and so the 

central value that emerges is the average SCC across models at the 3 percent discount rate” 

(Interagency Working Group on Social Cost of Carbon 2010, p. 25). However, for purposes of capturing 

the uncertainties involved in regulatory impact analysis, the interagency group emphasizes the 

importance and value of including all four SCC values. 

Table 2 shows the four selected SCC estimates in five year increments from 2010 to 2050. Values for 

2010, 2020, 2030, 2040, and 2050 are calculated by first combining all outputs (10,000 estimates per 
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model run) from all scenarios and models for a given discount rate. Values for the years in between are 

calculated using linear interpolation. The full set of revised annual SCC estimates between 2010 and 

2050 is reported in the Appendix.   

Table 2: Revised Social Cost of CO2, 2010 – 2050 (in 2007 dollars per metric ton of CO2) 

Discount Rate 5.0% 3.0% 2.5% 3.0% 
Year Avg Avg Avg 95th 
2010 11 32 51 89 
2015 11 37 57 109 
2020 12 43 64 128 
2025 14 47 69 143 
2030 16 52 75 159 
2035 19 56 80 175 
2040 21 61 86 191 
2045 24 66 92 206 
2050 26 71 97 220 

 

The SCC estimates using the updated versions of the models are higher than those reported in the 2010 

TSD due to the changes to the models outlined in the previous section. By way of comparison, the 2020 

SCC estimates reported in the original TSD were $7, $26, $42 and $81 (2007$) (Interagency Working 

Group on Social Cost of Carbon 2010).  Figure 1 illustrates where the four SCC values for 2020 fall within 

the full distribution for each discount rate based on the combined set of runs for each model and 

scenario (150,000 estimates in total for each discount rate). In general, the distributions are skewed to 

the right and have long tails. The Figure also shows that the lower the discount rate, the longer the right 

tail of the distribution. 

Figure 1: Distribution of SCC Estimates for 2020 (in 2007$ per metric ton CO2) 
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As was the case in the 2010 TSD, the SCC increases over time because future emissions are expected to 

produce larger incremental damages as physical and economic systems become more stressed in 

response to greater climatic change. The approach taken by the interagency group is to compute the 

cost of a marginal ton emitted in the future by running the models for a set of perturbation years out to 

2050. Table 3 illustrates how the growth rate for these four SCC estimates varies over time.  

Table 3: Average Annual Growth Rates of SCC Estimates between 2010 and 2050 

Average Annual Growth 5.0% 3.0% 2.5% 3.0% 
Rate (%) Avg Avg Avg 95th 

2010-2020 1.2% 3.3% 2.4% 4.4% 
2020-2030 3.4% 2.1% 1.7% 2.4% 
2030-2040 3.0% 1.9% 1.5% 2.1% 
2040-2050 2.6% 1.6% 1.3% 1.5% 

 

The future monetized value of emission reductions in each year (the SCC in year t multiplied by the 

change in emissions in year t) must be discounted to the present to determine its total net present value 

for use in regulatory analysis. As previously discussed in the 2010 TSD, damages from future emissions 

should be discounted at the same rate as that used to calculate the SCC estimates themselves to ensure 

internal consistency – i.e., future damages from climate change, whether they result from emissions 

today or emissions in a later year, should be discounted using the same rate.  

Under current OMB guidance contained in Circular A-4, analysis of economically significant proposed 

and final regulations from the domestic perspective is required, while analysis from the international 

perspective is optional. However, the climate change problem is highly unusual in at least two respects. 

First, it involves a global externality: emissions of most greenhouse gases contribute to damages around 
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the world even when they are emitted in the United States. Consequently, to address the global nature 

of the problem, the SCC must incorporate the full (global) damages caused by GHG emissions. Second, 

climate change presents a problem that the United States alone cannot solve. Even if the United States 

were to reduce its greenhouse gas emissions to zero, that step would be far from enough to avoid 

substantial climate change. Other countries would also need to take action to reduce emissions if 

significant changes in the global climate are to be avoided. Emphasizing the need for a global solution to 

a global problem, the United States has been actively involved in seeking international agreements to 

reduce emissions and in encouraging other nations, including emerging major economies, to take 

significant steps to reduce emissions. When these considerations are taken as a whole, the interagency 

group concluded that a global measure of the benefits from reducing U.S. emissions is preferable.   For 

additional discussion, see the 2010 TSD. 

IV. Other Model Limitations and Research Gaps 

The 2010 interagency SCC TSD discusses a number of important limitations for which additional research 

is needed. In particular, the document highlights the need to improve the quantification of both non-

catastrophic and catastrophic damages, the treatment of adaptation and technological change, and the 

way in which inter-regional and inter-sectoral linkages are modeled. While the new version of the 

models discussed above offer some improvements in these areas, further work remains warranted.  The 

2010 TSD also discusses the need to more carefully assess the implications of risk aversion for SCC 

estimation as well as the inability to perfectly substitute between climate and non-climate goods at 

higher temperature increases, both of which have implications for the discount rate used. EPA, DOE, and 

other agencies continue to engage in research on modeling and valuation of climate impacts that can 

potentially improve SCC estimation in the future.  
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Appendix A 

 

Table A1: Annual SCC Values: 2010-2050 (2007$/metric ton CO2) 

Discount Rate 5.0% 3.0% 2.5% 3.0% 
Year Avg Avg Avg 95th 
2010 11 32 51 89 
2011 11 33 52 93 
2012 11 34 54 97 
2013 11 35 55 101 
2014 11 36 56 105 
2015 11 37 57 109 
2016 12 38 59 112 
2017 12 39 60 116 
2018 12 40 61 120 
2019 12 42 62 124 
2020 12 43 64 128 
2021 12 43 65 131 
2022 13 44 66 134 
2023 13 45 67 137 
2024 14 46 68 140 
2025 14 47 69 143 
2026 15 48 70 146 
2027 15 49 71 149 
2028 15 50 72 152 
2029 16 51 73 155 
2030 16 52 75 159 
2031 17 52 76 162 
2032 17 53 77 165 
2033 18 54 78 168 
2034 18 55 79 172 
2035 19 56 80 175 
2036 19 57 81 178 
2037 20 58 83 181 
2038 20 59 84 185 
2039 21 60 85 188 
2040 21 61 86 191 
2041 22 62 87 194 
2042 22 63 88 197 
2043 23 64 89 200 
2044 23 65 90 203 
2045 24 66 92 206 
2046 24 67 93 209 
2047 25 68 94 211 
2048 25 69 95 214 
2049 26 70 96 217 
2050 26 71 97 220 
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 Table A2: 2020 Global SCC Estimates at 2.5 Percent Discount Rate (2007$/metric ton CO2) 

Percentile 1st 5th 10th 25th 50th Avg 75th 90th 95th 99th 
Scenario12 PAGE 
IMAGE 6 11 15 27 58 129 139 327 515 991 
MERGE 

Optimistic 

4 6 9 16 34 78 82 196 317 649 
MESSAGE 4 8 11 20 42 108 107 278 483 918 
MiniCAM Base 5 9 12 22 47 107 113 266 431 872 
5th Scenario 2 4 6 11 25 85 68 200 387 955 
  

          
Scenario DICE 
IMAGE 25 31 37 47 64 72 92 123 139 161 
MERGE 

Optimistic 

14 18 20 26 36 40 50 65 74 85 
MESSAGE 20 24 28 37 51 58 71 95 109 221 
MiniCAM Base 20 25 29 38 53 61 76 102 117 135 
5th Scenario 17 22 25 33 45 52 65 91 106 126 
  

          
Scenario FUND 
IMAGE -14 -2 4 15 31 39 55 86 107 157 
MERGE 

Optimistic 

-6 1 6 14 27 35 46 70 87 141 
MESSAGE -16 -5 1 11 24 31 43 67 83 126 
MiniCAM Base -7 2 7 16 32 39 55 83 103 158 
5th Scenario -29 -13 -6 4 16 21 32 53 69 103 
 

Table A3: 2020 Global SCC Estimates at 3 Percent Discount Rate (2007$/metric ton CO2) 

Percentile 1st 5th 10th 25th 50th Avg 75th 90th 95th 99th 
Scenario PAGE 
IMAGE 4 7 10 18 38 91 95 238 385 727 
MERGE 

Optimistic 

2 4 6 11 23 56 58 142 232 481 
MESSAGE 3 5 7 13 29 75 74 197 330 641 
MiniCAM Base 3 5 8 14 30 73 75 184 300 623 
5th Scenario 1 3 4 7 17 58 48 136 264 660 
  

          
Scenario DICE 
IMAGE 16 21 24 32 43 48 60 79 90 102 
MERGE 

Optimistic 

10 13 15 19 25 28 35 44 50 58 
MESSAGE 14 18 20 26 35 40 49 64 73 83 
MiniCAM Base 13 17 20 26 35 39 49 65 73 85 
5th Scenario 12 15 17 22 30 34 43 58 67 79 
  

          
Scenario FUND 
IMAGE -13 -4 0 8 18 23 33 51 65 99 
MERGE 

Optimistic 

-7 -1 2 8 17 21 29 45 57 95 
MESSAGE -14 -6 -2 5 14 18 26 41 52 82 
MiniCAM Base -7 -1 3 9 19 23 33 50 63 101 
5th Scenario -22 -11 -6 1 8 11 18 31 40 62 

                                                            
12 See 2010 TSD for a description of these scenarios. 
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Table A4: 2020 Global SCC Estimates at 5 Percent Discount Rate (2007$/metric ton CO2) 

Percentile 1st 5th 10th 25th 50th Avg 75th 90th 95th 99th 
Scenario PAGE 
IMAGE 1 2 2 5 10 28 27 71 123 244 
MERGE 

Optimistic 

1 1 2 3 7 17 17 45 75 153 
MESSAGE 1 1 2 4 9 24 22 60 106 216 
MiniCAM Base 1 1 2 3 8 21 21 54 94 190 
5th Scenario 0 1 1 2 5 18 14 41 78 208 
  

          
Scenario DICE 
IMAGE 6 8 9 11 14 15 18 22 25 27 
MERGE 

Optimistic 

4 5 6 7 9 10 12 15 16 18 
MESSAGE 6 7 8 10 12 13 16 20 22 25 
MiniCAM Base 5 6 7 8 11 12 14 18 20 22 
5th Scenario 5 6 6 8 10 11 14 17 19 21 
  

          
Scenario FUND 
IMAGE -9 -5 -4 -1 2 3 6 10 14 24 
MERGE 

Optimistic 

-6 -4 -2 0 3 4 6 11 15 26 
MESSAGE -10 -6 -4 -1 1 2 5 9 12 21 
MiniCAM Base -7 -4 -2 0 3 4 6 11 14 25 
5th Scenario -11 -7 -5 -3 0 0 3 5 7 13 
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Table A5: Additional Summary Statistics of 2020 Global SCC Estimates 

Discount rate: 5.0% 3.0% 2.5% 
Statistic: Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis 

DICE 12 26 2 15 38 409 3 24 57 1097 3 30 
PAGE 22 1616 5 32 71 14953 4 22 101 29312 4 23 
FUND 3 41 5 179 19 1452 -42 8727 33 6154 -73 14931 
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Appendix B 

 

The November 2013 revision of this technical support document is based on two corrections to the runs 

based on the FUND model. First, the potential dry land loss in the algorithm that estimates regional 

coastal protections was misspecified in the model’s computer code. This correction is covered in an 

erratum to Anthoff and Tol (2013a) published in the same journal (Climatic Change) in October 2013 

(Anthoff and Tol (2013b)). Second, the equilibrium climate sensitivity distribution was inadvertently 

specified as a truncated Gamma distribution (the default in FUND) as opposed to the truncated Roe and 

Baker distribution as was intended. The truncated Gamma distribution used in the FUND runs had 

approximately the same mean and upper truncation point, but lower variance and faster decay of the 

upper tail, as compared to the intended specification based on the Roe and Baker distribution. The 

difference between the original estimates reported in the May 2013 version of this technical support 

document and this revision are generally one dollar or less. 
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