□ Not Public Document – Not For Public Disclosure

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	1
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP).

Request:

Please provide Xcel Energy's response to any and all information requests pertaining to the above referenced filing. This is an ongoing request.

Response:

Please see Attachment A to this response. Attachment A contains the only Information Request (IR) we have responded to in this docket to date (MPUC IR No. 1). Moving forward, the Company will include Fresh Energy on all of our IR submittals in this docket.

Preparer:	Amber Hedlund
Title:	Regulatory Case Specialist
Department:	Regulatory Affairs
Telephone:	612.337.2268
Date:	January 23, 2020

Not Public Document – Not For Public Disclosure
Public Document – Not Public Data Has Been Excised
Public Document

Xcel Energy	Information Request No.	1
Docket No.:	E002/M-19-666	
Response To:	Minnesota Public Utilities Commission	
Requestor:	Michelle Rosier	
Date Received:	December 16, 2019	

Question:

a. Please provide additional detail and context on the Company's belief that the certification request should be considered in a Commission process that resembles a resource acquisition proceeding¹, including which type of resource acquisition process, proposed process steps, and justification for finding the proposed process as the most reasonable.

b. Provide an update on any stakeholder input or involvement received in development of the proposed deadlines, process steps, and procedural schedule.

c. Given the 2020 MYRP is to be withdrawn in Docket No. E002/GR-19-564², what is the Company's proposed timeline and process for Commission review of the Advanced Grid Intelligence and Security (AGIS) certification request? Please address how the proposal is consistent with Minn. Stat. §216B.2425.

Response:

For context for this response, we note that we view Commission certification as providing the Company with assurance that it can proceed with the certified project(s) and seek recovery under the Transmission Cost Recovery (TCR) Rider. The Commission would additionally have the opportunity to review actual costs and expenditures as part of the Company's subsequent TCR or general rate case filings, when the Company seeks cost recovery for the projects.

a. Minn. Stat. § 216B.2425 sets forth the broad parameters for scheduling certification requests, namely that requests be submitted by "November 1 of each odd-numbered year," and that the Commission "certify, certify as modified, or deny certification" by "June 1 of each even-numbered year." No Minnesota statute, rule, or regulation sets out a more specific process for reviewing certification requests. We believe that the appropriate process for a given certification request may depend on the scope of the specific investment for which certification is requested. For example, the Company's 2019 Integrated

Distribution Plan (2019 IDP) was submitted concurrent with a multi-year rate case in which the Company also sought cost recovery for its advanced grid investments.

Under normal circumstances, and given the general seven-month statutory timeline, we believe a process that resembles the procedure established by the Commission for some of the Company's recent proposed acquisitions of generating facilities (e.g., *Acquisition of 302.4 MW Wind Generation*, Docket No. E002/M-17-694, *Petition for Approval of the Acquisition of the Mankato Energy Center (MEC)*, Docket No. IP6949,E002/PA-18-702) would be appropriate. Although each of those proposed acquisitions was governed by a separate statute (Minn. Stat. § 216B.2422 and Minn. Stat. §216B.50, respectively), they both were miscellaneous filings under Minn. R. 7829.1300. The Commission set out comment periods in both that would have allowed the proposals to be reviewed by parties and set for hearing in less than seven months, with more time however, than the default 30 days for initial Comments and 10 days for Reply Comments as provided by Minn. R. 7829.1400 (Commission Action on Miscellaneous Filings; Comments).

We recognize, however, that the scope of the Advanced Grid Intelligence and Security (AGIS) investments proposed in the 2019 IDP may require analysis that goes beyond the normal seven-month timeframe. That is why we have offered to work with the Commission and stakeholders to set an appropriate deadline and procedural schedule to facilitate the consideration of these investments.

- b. We have shared our perspective on the procedural timeline and our offer to waive the June 1st statutory deadline to perhaps the September timeframe with the following stakeholders: Minnesota Department of Commerce, Minnesota Office of the Attorney General, Center for Energy and Environment, Fresh Energy, and IPS Solar. The feedback we received either supported a longer procedural timeframe for a certification determination or was indifferent as to the procedural details.
- c. Although the Company plans to withdraw its 2020 multi-year rate plan request, we continue to believe the timeline and process for Commission review of our AGIS certification request should be set after consultation with stakeholders and the Commission, so that parties are provided an appropriate amount of time to review and comment on the proposed investments. Since the June 1, 2020 date required under Minn. Stat. § 216B.2425 might be hard to meet, the Company is open to waiving enforcement of this deadline to facilitate appropriate review and suggests three additional months, or a decision by September 1, 2020.

We believe that the June 1 deadline provided in Minn. Stat. § 216B.2425, subd. 3,

with respect to certification of grid modernization projects like AGIS is designed to be a utility protection, allowing utilities to timely recover grid modernization investments through the TCR Rider pursuant to Minn. Stat. § 216B.16, subd. 7b. It is, therefore, the Company's right to waive this deadline. Under Minnesota law, statutory deadlines may be waived by a party for whom the deadlines are designed to protect. See In re Commitment of Giem, 742 N.W.2d 422, 431 (Minn. 2007). Consistent with this principle, the Commission has a longstanding practice of accepting utilities' offers to waive the ten-month review period under Minn. Stat. 216B.16, subd. 2, and its historical analogs. See In the Matter of Northwestern Bell Telephone Company's Proposed Tariff to Discontinue Operator Services to Local Exchange Carriers, Order Accepting Waiver of Statutory Review Period and Granting Extension of Time for Parties' Reports, Docket No. P-421/M-87-815 (March 18, 1988); In the Matter of the Application by CenterPoint Energy Resources Corp., d/b/aCenterPoint Energy Minnesota Gas, for Authority to Increase Natural Gas Rates in Minnesota, Order Accepting Filing, Suspending Rates, and Extending Timeline, Docket No. G-008/GR-19-524 (Dec. 18, 2019). We believe the Company's offer to waive the June 1 deadline under Minn. Stat. § 216B.2425, subd. 3, is lawful and consistent with Commission precedent.

Preparer:	Bria Shea
Title:	Director, Regulatory & Strategic Analysis
Department:	Regulatory Affairs
Telephone:	612.330.6064
Date:	December 23, 2019

Not Public Document – Not For Public Disclosure
Public Document – Not Public Data Has Been Excised
Public Document

Xcel Energy		Information Request No.	2
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 30.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the claim that "additional investment is needed" in the form of the ISI initiative.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

We believe that, within the next five years, we will need to focus capital on our distribution system to improve the experience of the average distribution customer by addressing aging infrastructure, better preparing the system for increased levels of Distributed Energy Resources (DER) and electric vehicles (EV), and improve its overall resilience.

There is no particular study or report that was used to develop the Incremental System Investment (ISI) initiative. Rather, the ISI was conceptualized by those familiar with the distribution system and the issues that commonly affect the system and our service to customers. The proposed ISI programs are informed by the impact various assets may have on reliability and the customer experience, through frequent and/or long-duration interruptions of service.

Since 2012, the Company has been funding asset health at an increased level to improve the life cycle replacement on seven key assets on our system: transmission, substations, mainline, overhead primary, underground primary, taps, and

transformers. However, over this period of time, we also have seen an increase in other projects that demand funding, including required relocation projects and other emergent system needs, and required the Company to reprioritize a portion of these asset-health investments to timely address the emergent system needs. ISI seeks to restore the attention and focus to asset health, and do so with consideration of beneficial new programs and customer experience improvements, and specifically does so in years three to five of our five-year budgets. Other utilities are undertaking similar types of resilience-focused initiatives, including Duke/Dominion's targeted undergrounding programs.¹

With that context, we outline some of the data underlying the major investment categories contemplated in our current ISI plan, starting with a Figure [FE-2] 1 below, which portrays our reliability from the perspective of our customers' experience.

This presentation of the customers' reliability experience by major system component is not a traditional industry reliability standard, such as System Average Interruption Duration Index (SAIDI) or Customer Average Interruption Duration Index (CAIDI), as these are not representative of the individual customer experience because they are presented as "storm-normalized." This removes the effects of major weather events, and is intended to isolate the portion of reliability performance within the utility's

¹ https://www.duke-energy.com/our-company/future/targeted-undergrounding

control, but removing the major weather events does not reflect the customers' actual experience. Also viewing reliability from this non-normalized, or "all day" reliability perspective helps to identify potential new programs that may be necessary to ensure we are addressing the experience of our customers, and not just those associated with high profile events.

Substation Programs

The objective of the ISI Substations program is to improve the reliability and resiliency of the Company's Minnesota substations. Substation transformers are fundamental to the reliability of our distribution system, and – while the failure of substation transformers is not a common occurrence – when it happens, the consequences are high and result in a significant number of customers losing service.

As can be seen in Figure 1 above, substation level outages, as designed and intended, is a small percentage of the overall customer minutes out (CMO) experienced on the system. A single substation can serve upwards of 45,000 customers – and as such, because of the high-impact an outage would have on our customers and our system, we design and build our substations to minimize the potential of failure. We also develop programs to further minimize the potential for failure by proactively identifying when a failure is likely to occur, so that we may preemptively replace equipment. The Substation ISI programs would increase the rate at which we replace our substation transformers.

Underground Programs

As outlined in the IDP, the ISI Underground program is composed of seven components, including replacement of different types of cable.² Underground cable is resistant to many environmental issues, but outages due to degraded cable can be lengthy. Programs to identify and replace degraded cable before it actually fails reduces the probability of lengthy outages. The below Figure portrays outages on underground portions of our system by cause – showing the predominant cause is cable failure, with approximately 70 percent of the CMO.

² ISI Underground Programs include: (1) mainline cable replacement, (2) underground residential distribution (URD) cable replacement, (3) cable asset life extension, (4) network monitoring, (5) St. Paul tunnel work (6) feeder exit capacity work, and (7) tools and equipment.

Figure [FE-2] 2: State of Minnesota Underground Outages by Cause 2015 to 2019

XCEL ENERGY - State of MN UG Causes

Overhead Tap Programs

As noted in the IDP, the primary goal of the overhead tap program is to improve reliability and resiliency of our distribution system through a series of six programs focused on overhead tap lines throughout our Minnesota service area. The overhead tap system is the single largest contributor to customer outages. The overhead system is generally older than the underground system and is subjected to many environmental factors including trees, wind, lightning, public damage and ice. Unlike the underground system, typically mitigating any one equipment failure cause type will not drastically change the performance of an overhead tap; strengthening the system against vegetation impacts however, can reduce the number and length of outages. Our current vegetation program is robust in that it typically results in 90 percent of the vegetation outages to be considered non-preventable. In developing this part of our ISI initiative, we identified programs that could reduce outages, number of customers impacted and length of outages based on several causes for the overhead system with a focus on minimizing outages on stormy days. We provide a view of overhead tap outages by cause in the below Figure.

Figure [FE-2] 3: State of Minnesota Overhead Outages by Cause 2015 to 2019

XCEL ENERGY - State of MN OH Causes

Overhead Mainline Programs

The ISI Overhead Mainline programs targets overhead mainline feeders that are the larger capacity lines found along major roadways, and that then branch off into smaller overhead tap lines and then to service laterals that connect to homes and businesses. Similar to the overhead tap system, the overhead mainline system has many different causes of events. Singling out mitigation opportunities can be difficult, but we have identified two areas of initial focus: (1) pole fire mitigation; and (2) lightening arrestor replacement. As shown in Figure 4 below, pole fires are trending upward, and tend to be some of the longest to repair due to the extensive work that typically is required.³

³ Pole fires are typically caused by road salt contamination on insulators and most typically occur on older poles in higher speed traffic corridors with multiple insulators.

Figure [FE-2] 4: State of Minnesota Feeder Lockouts – Pole Fire 2015 to 2019

The particular investments we believe are necessary and have budgeted for each of these program areas are set forth in Attachment A to our response to Fresh Energy Information Request No. 8, and the need for each of these investments is laid out in the Direct Testimony of Ms. Kelly Bloch in Docket No. E002/GR-19-564 from pages 43 to 75.

Preparer:	Molly Dimond
Title:	Investment Delivery
Department:	System Planning and Strategy
Telephone:	303.571.3232
Date:	January 23, 2020

□ Not Public Document – Not For Public Disclosure

Dublic Document – Not Public Data Has Been Excised

Public Document

	Information Request No.	3
E002/M-19-666		
Fresh Energy		
Isabel Ricker		
January 13, 2020		
	E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020	Information Request No. E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 38, footnote 33.

Request:

- A. Please provide a corrected link or copy of the report titled IEEE Benchmark Year 2019, Results for 2018 Data.
- B. Please provide NSPM's participant code in the 2019 IEEE study.

Response:

A. The IEEE Distribution Reliability Working Group has been assigned a new link for posting working group documents beginning in 2019, which was discussed at the working group winter meeting on January 14 & 15, 2020. This volunteer group has not yet completed transfer of previous documents or posting of new documents. The link where the benchmarking reports will be posted is as follows: <u>https://cmte.ieee.org/pes-drwg/benchmarking/</u>

In the interim until the reports are moved to the new location, we provide the report "IEEE Benchmark Year 2019 Results for 2018 Data" as Attachment A to this response.

B. We cannot provide any of the participant codes of the utilities that participate in the IEEE benchmarking study, including the Company. Participants in the IEEE benchmark study are anonymous, and sharing of a participant code outside of the participating organization is not allowed. We note that important information on the benchmarking study background and results interpretation is included on slides 2 and 3 of the study report. While the results will likely be different, we note that utilities self-report their reliability index values to the U.S. Energy Information Administration, which can be accessed

at: <u>https://www.eia.gov/electricity/data/eia861/</u> We note, however, these are self-calculated results, which are not necessarily comparable to each other or the IEEE results. The IEEE results are the only standard industry benchmark for utility reliability results; the utilities provide granular data including daily summary totals for the number of outage events, the number of customers interrupted, and the number of customer minutes interrupted and IEEE calculates the performance using standardized techniques and protocols.

Preparer:	John Ainscough
Title:	Principal Engineer
Department:	Electric Distribution System
Telephone:	303-571-3552
Date:	January 23, 2020

IEEE Benchmark Year 2019 Results for 2018 Data

2019 General Meeting Distribution Reliability Working Group Atlanta, Georgia

Background to IEEE DRWG Benchmark Study

- 1. Initiated in 2003, conducted annually
- 2. Participants are anonymous with key identifier to retain anonymity
- 3. Participation list is not revealed to anyone
- 4. Each participant can choose to share their results
- 5. No inference is made about good or bad reliability
- 6. Intended to provide information for users to assess their performance relative to peers

2

7. Called the 2019 Study (for 2018 Results)

Benchmarking

- Using annual key metrics (SAIDI, SAIFI and CAIDI) to assess performance of a system may be useful, however, needs to be tempered
- DRWG Study attempts to identify various aspects that could cause a difference in reported metrics
- Data may not be directly comparable, since
 - Data collection & system differences exist
 - Certain exclusion differences can occur, although we strive to have the differences minimized
- IEEE 1366-2003/2012
 - addresses data issues by clearly defining the rules (i.e. what data should be excluded)
 - It DOES NOT address the data collection issues
 - Companies may not report all forms of outages, due to data collection issues or other reasons

Regions represented by the participants 2019 Benchmark Study

Power & Energy Society

Classification of Respondents

- 85,258,061 customers represented in North America
- 2019 Survey
 - 7 Small (=< 100,000 customers)</p>
 - 56 Medium (>100,000 and <1,000,000 customers)
 - 32 Large (>= 1M customers)

5

Respondents

•About 250 companies have responded at some time

•2019 Survey: 90 entries responded

All Participants	90	SAIDI ALL	SAIDI IEEE	SAIDI WOF	SAIDI WOP	SAIFI ALL	SAIFI IEEE	SAIFI WOF	SAIFI WOP	CAIDI ALL	CAIDI IEEE
0	MIN	31	28	28	28	0.4	0.3	0.3	0.3	62	62
1	Q1	127	85	83	75	1.1	0.9	0.8	0.7	117	95
2	MEDIAN	209	123	110	102	1.4	1.1	0.9	0.8	162	109
3	Q3	399	168	150	145	1.7	1.4	1.1	1.0	251	133
4	MAX	3444	535	500	463	3.4	2.5	2.5	1.8	1177	247

Respondents by Utility Size

Quartile Small	7	SAIDI ALL	SAIDI IEEE	SAIDI WOF	SAIDI WOP	SAIFI ALL	SAIFI IEEE	SAIFI WOF	SAIFI WOP	CAIDI ALL	CAIDI IEEE
0	MIN	52	29	30	29	0.8	0.4	0.6	0.4	68	66
1	Q1	75	62	59	54	0.9	0.8	0.8	0.6	82	72
2	MEDIAN	113	98	70	58	1.3	1.1	0.8	0.8	94	85
3	Q3	331	167	135	100	1.9	1.4	1.0	0.8	135	110
4	MAX	367	190	157	148	3.0	2.4	1.2	1.1	220	134
Quartile Medium	56	SAIDI ALL	SAIDI IEEE	SAIDI WOF	SAIDI WOP	SAIFI ALL	SAIFI IEEE	SAIFI WOF	SAIFI WOP	CAIDI ALL	CAIDI IEEE
0	MIN	31	28	28	28	0.4	0.3	0.3	0.3	62	62
1	Q1	125	88	84	78	1.1	0.9	0.8	0.7	115	95
2	MEDIAN	184	133	111	106	1.4	1.1	0.9	0.9	157	109
3	Q3	338	162	145	144	1.7	1.5	1.1	1.1	236	134
4	MAX	3444	484	466	400	2.9	2.3	2.2	1.8	1177	207
Quartile Large	32	SAIDI ALL	SAIDI IEEE	SAIDI WOF	SAIDI WOP	SAIFI ALL	SAIFI IEEE	SAIFI WOF	SAIFI WOP	CAIDI ALL	CAIDI IEEE
0	MIN	49	49	49	48	0.5	0.5	0.5	0.5	102	69
1	Q1	170	86	84	76	1.1	0.8	0.8	0.8	144	100
2	MEDIAN	282	112	106	96	1.4	1.0	0.9	0.8	181	114
3	Q3	501	170	154	147	1.7	1.3	1.1	1.0	363	136
4	MAX	1292	535	500	463	3.4	2.5	2.5	1.8	595	247

Historic SAIDI-IEEE & Total

Historic SAIFI-IEEE & Total

Historic CAIDI-IEEE & Total

2019 SAIDI Ordered by IEEE w/ME, Feed & Plan

Power & Energy Society*

2019 SAIFI Ordered by IEEE w/ME, Feed & Plan

Total (STD) SAIDI 2019

Total (STD) SAIFI 2019

Total (STD) CAIDI 2019

Major Event Excluded (IEEE SAIDI 2019)

Major Event Excluded (IEEE SAIFI 2019)

Major Event Excluded (IEEE CAIDI 2019)

Distribution Only (WOF) SAIDI 2019

Distribution Only (WOF) SAIFI 2019

Distribution Only (WOF) CAIDI 2019

Forced Distribution Only (WOP) SAIDI 2019

Forced Distribution Only (WOP) SAIFI 2019

Forced Distribution Only (WOP) CAIDI 2019

Docket No. E002/M-19-666 Fresh Energy IR No. 3 Attachment A Page 25 of 25

Questions

25

Not Public Document – Not For Public Disclosure
Public Document – Not Public Data Has Been Excised
Public Document

Xcel Energy		Information Request No.	4
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 75.

Request:

Fresh Energy understands that Synergi offers an Incremental Hosting Capacity Analysis (IHCA) tool and that Xcel would not have incremental or additional technology costs if it used Synergi to complete the hosting capacity analysis. Please explain why Xcel Energy continues to use DRIVE instead of the Synergi IHCA tool for its hosting capacity analysis.

Response:

Questions about hosting capacity analysis are best addressed in Docket No. E002/M-19-685. The Integrated Distribution Plan merely summarizes the Company's hosting capacity analysis, as it does for other matters that have their own regulatory docket. That said, the comments period is still open in the current hosting capacity docket, so we will provide the requested information in our January 27, 2019 Supplemental Comments in that proceeding.

Preparer:	Jody Londo
Title:	Regulatory Policy Specialist
Department:	Regulatory Affairs
Telephone:	612.330.5601
Date:	January 23, 2020

Not Public Document – Not For Public Disclosure
Public Document – Not Public Data Has Been Excised
Public Document

Xcel Energy		Information Request No.	5
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 94.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the cost estimate of \$400,000 per MWh for battery storage.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

We based our \$400,000 per MWh battery storage cost estimate on industry estimates. A public study we relied on is the November 2018 NREL Technical Report, NREL/TP-6A20-71714, provided as Attachment A to this response.

Preparer:	Luther Miller
Title:	Distribution Planning Engineer
Department:	System Planning
Telephone:	763-493-1893
Date:	January 23, 2020

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 1 of 32

2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark

Ran Fu, Timothy Remo, and Robert Margolis

National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC **Technical Report** NREL/TP-6A20-71714 November 2018

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 2 of 32

2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark

Ran Fu, Timothy Remo, and Robert Margolis

National Renewable Energy Laboratory

Suggested Citation

Fu, Ran, Timothy Remo, and Robert Margolis. 2018. 2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-71714. https://www.nrel.gov/docs/fy19osti/71714.pdf.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC **Technical Report** NREL/TP-6A20-71714 November 2018

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 • www.nrel.gov

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 3 of 32

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via <u>www.OSTI.gov</u>.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097, NREL 46526.

NREL prints on paper that contains recycled content.

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 4 of 32

Acknowledgments

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 5 of 32

List of Acronyms

AC	alternating current
BOS	balance of system
CAES	compressed air energy storage
DC	direct current
DOE	U.S. Department of Energy
EPC	engineering, procurement, and construction
HVAC	heating, ventilating, and air conditioning
ILR	inverter loading ratio
LCOS	levelized cost of storage
Li	lithium
PV	photovoltaic(s)
SG&A	selling, general, and administrative

Executive Summary

The recent rapid growth of utility-scale photovoltaic (PV) deployment and the declining costs of energy storage technologies have stimulated interest in combining PV with energy storage to provide dispatchable energy (i.e., energy on demand) and reliable capacity (i.e., grid stability). In particular, the use of lithium-ion batteries in U.S. utility-scale applications has grown in recent years owing to the technology's favorable cost and performance characteristics. This study is our first time to use bottom-up modeling to benchmark the installed costs of various standalone lithium-ion storage (with storage connected to the grid only) and PV-plus-storage (with storage connected to PV and the grid) system configurations. The PV-plus-storage configurations include 1) co-located PV-plus-storage systems vs. PV-plus-storage systems in different locations, and 2) direct current (DC) coupled vs. alternating current (AC) coupled battery configurations for the co-located PV-plus-storage systems.

Figure ES-1 shows the modeled costs of standalone lithium-ion energy storage systems with an installed capacity of 60 MW able to provide electricity for several different durations. Assuming a constant per-energy-unit battery price of \$209/kWh, the system costs vary from \$380/kWh (4-hour duration system) to \$895/kWh (0.5-hour duration system). The battery cost accounts for 55% of total system cost in the 4-hour system, but only 23% in the 0.5-hour system. At the same time, non-battery cost categories accounts for an increasing proportion of the system cost as duration declines.

1,000 \$/kWh

iii

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure ES-2 summarizes our PV-plus-storage model results for several system types and configurations. Each uses a 100-MW PV system and a 60-MW lithium-ion battery that provides 4 hours of storage:

- Standalone 100-MW PV system with one-axis tracking (\$111 million)
- Standalone 60-MW/240-MWh, 4-hour-duration energy storage system (\$91 million)
- Co-located, DC-coupled PV (100 MW) plus storage (60 MW/240 MWh, 4-hour duration) system (\$186 million)
- Co-located, AC-coupled PV (100 MW) plus storage (60 MW/240 MWh, 4-hour duration) system (\$188 million)
- PV (100 MW) plus storage (60 MW/240 MWh, 4-hour duration) system with PV and storage components sited in different locations (\$202 million)

Co-locating the PV and storage subsystems produces cost savings by reducing costs related to site preparation, land acquisition, permitting, interconnection, installation labor, hardware (via sharing of hardware such as switchgears, transformers, and controls), overhead, and profit. The cost of the co-located, DC-coupled system is 8% lower than the cost of the system with PV and storage sited separately, and the cost of the co-located, AC-coupled system is 7% lower.

Using DC-coupling rather than AC-coupling results in a 1% lower total cost, which is the net result of cost differences between DC-coupling and AC-coupling in the categories of solar inverter, structural balance of system (BOS), electrical BOS, labor, EPC (engineering, procurement, and construction) and developer overhead, sales tax, contingency, and profit. For an actual project, however, cost savings may not be the only factor in choosing DC or AC coupling. Additional factors—such as retrofit considerations, system performance, design flexibility, and operations and maintenance—should be considered.

The benchmarked costs could facilitate PV-plus-storage project development, and the itemized cost savings could incentivize deployment of co-located PV-plus-storage systems. In addition, the model can help industry representatives evaluate the cost impacts of various battery durations for grid applications. Finally, the model can be used to estimate future potential cost-reduction opportunities for PV-plus-storage systems, helping to guide research and development aimed at advancing cost-effective system configurations.

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 8 of 32

Figure ES-2. 2018 Cost benchmarks for PV-plus-storage systems (4-hour duration) in different sites and the same site (DC-coupled and AC-coupled cases)

Table of Contents

1	Introduction	1
2	Energy Storage Technology Options and Deployment History	2
3	Lithium-Ion Battery Storage Trends	5
4	Cost Models	8
	4.1 Lithium-Ion Standalone Storage Cost Model	9
	4.2 PV-Plus-Storage System Cost Model	
5	Model Results and Summary	
Re	eferences	
Ар	opendix. Figure Data from DOE Energy Storage Database	21

List of Figures

Figure ES-1. 2018 U.S. utility-scale lithium-ion standalone storage costs for durations of 0.5–4 hours	
(60 MW _{DC})	iii
Figure ES-2. 2018 Cost benchmarks for PV-plus-storage systems (4-hour duration) in different sites	
and the same site (DC-coupled and AC-coupled cases)	. v
Figure 1. Average characteristics of energy storage systems built worldwide between 1958 and 2017, by	,
technology, from the DOE Energy Storage Database (2018), sample size = 1,041 (pumped	
hydro not shown because of its very large global capacity)	. 3
Figure 2. Annual capacities of energy storage systems built worldwide between 2005 and 2017,	
by technology, from the DOE Energy Storage Database (2018)	.4
Figure 3. Li-ion storage deployment by region, 2008–2017 (DOE Energy Storage Database 2018)	. 5
Figure 4. U.S. Li-ion energy storage by sector, 2008–2017 (DOE Energy Storage Database 2018)	. 6
Figure 5. Distributions of U.S. Li-ion energy storage power and duration, by sector, 2008–2016	
(DOE Energy Storage Database 2018)	. 7
Figure 6. Structure of the bottom-up cost model for standalone storage systems	. 8
Figure 7. Traditional utility-scale Li-ion battery energy storage components	. 9
Figure 8. Battery system components (NAGF/ESIG Workshop 2018)	. 9
Figure 9. 2018 U.S. utility-scale Li-ion battery standalone storage costs for durations of 0.5–4 hours	
(60 MW _{DC})	11
Figure 10. DC-coupled and AC-coupled PV-plus-storage system configurations 1	14
Figure 11. 2018 Cost benchmarks for PV-plus-storage systems (4-hour duration) in different sites and	
the same site (DC-coupled and AC-coupled cases) 1	17

List of Tables

Table 1. U.S. Li-ion Energy Storage by Sector, 2008–2017 (DOE Energy Storage Database 2018)	7
Table 2. Utility-Scale Li-ion Energy Storage System Model Inputs and Assumptions	10
Table 3. Detailed Cost Breakdown for a 60-MW U.S. Li-ion Standalone Storage System with	
Durations of 0.5–4 Hours	12
Table 4. Cost Factors for Siting PV and Storage Together vs. Separately	13
Table 5. Comparison of DC and AC Coupling for PV-Plus-Storage Systems	15
Table 6. Detailed Cost Breakdown for Utility-Scale Li-ion PV-Plus-Storage Systems	18

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 11 of 32

1 Introduction

The recent rapid growth of utility-scale photovoltaic (PV) deployment and the declining costs of energy storage technologies have stimulated interest in combining PV with energy storage to provide dispatchable energy and reliable capacity—particularly as the U.S. utility storage market has begun moving away from short-term power regulation and toward longer-term temporal shifting of renewable generation. The large-scale power interruptions caused by recent extreme weather/fire events in Puerto Rico, Houston, and California have also highlighted the need to improve the reliability and resiliency of U.S. electricity systems. The integration of renewable generation and energy storage offers a way to cost-effectively diversify and strengthen the nation's energy portfolio.

Historically, cost has been a barrier to deployment of PV and storage technologies, but improvements in both types of technologies are changing the economics rapidly. In particular, the use of lithium-ion (Li-ion) batteries in U.S. utility-scale applications has grown in recent years owing to the technology's favorable cost and performance characteristics. Still, utility-scale PV-plus-storage applications are in their infancy. The only such U.S. system recorded in the U.S. Department of Energy (DOE) Energy Storage Database is a 13-MW PV plus 52-MWh energy storage system in Kauai, Hawaii.

In order to provide a baseline for the accurate and transparent assessment of utility-scale PVplus-storage systems, in this report we use the National Renewable Energy Laboratory's new bottom-up modeling tool to benchmark the installed costs of various standalone Li-ion storage and PV-plus-storage system configurations for utility-scale applications. Our analysis illustrates the tradeoffs between system choices including short- versus long-duration batteries, co-location versus separate location of battery and PV subsystems, and direct current (DC) versus alternating current (AC) coupling of co-located PV-plus-storage systems.

The remainder of this report is structured as follows. Section 2 provides a brief overview of energy storage technology options and deployment history. Section 3 focuses on Li-ion battery storage trends. Section 4 describes our cost models, and Section 5 shows the modeled cost results.

2 Energy Storage Technology Options and Deployment History

Numerous energy storage technologies have been deployed over the past century. Early largescale systems typically employed physical or thermal storage media. However, widespread use of such systems has been hindered by cost, energy density, and siting disadvantages.

For example, in a pumped hydro storage system, water is pumped uphill into a reservoir and later released downhill through hydroelectric turbines to convert the stored potential energy into electricity. The first large-scale U.S. pumped hydro system was built in 1929 near New Milford, Connecticut (DOE 2018). In 1985, the country's largest pumped hydro system—with a generation capacity of 3 GW—was completed in Bath County, Virginia, after 8 years of construction (DOE 2018). Nationwide, 40 pumped hydro systems are operating today (DOE Energy Storage Database 2018). This technology typically has a roundtrip energy efficiency of 70%–80%, but siting presents major challenges. Cost-effective sites must have characteristics that enable damming of waterways to create a reservoir, usually requiring a large area remote from energy-demand centers. Even when a suitable site is identified, environmental and land-ownership considerations may hinder project approvals.

Compressed air energy storage (CAES) is another established technology that uses a physical storage mechanism. Energy is stored via air compression, and later the air is expanded to generate electricity. The lone large CAES system operating in the United States is the 110-MW plant in McIntosh, Alabama, which uses compressed air to run a natural gas turbine more efficiently (DOE Energy Storage Database 2018). CAES entails drawbacks that have hindered its deployment. Large-scale systems typically require specific geographical characteristics such as underground caverns that can be sealed to hold the compressed air. In addition, roundtrip efficiency of current technologies is only 40%–55% (Chen et al. 2013), and natural gas is consumed in the reconversion process. However, emerging CAES approaches offer higher theoretical efficiencies and generation without the need for fossil fuel combustion (Energy Storage Association 2018).

More recently, other types of energy storage have begun to be deployed at scale. Figure 1 shows the characteristics of energy storage technologies for systems built between 1958 and 2017 worldwide, categorized by storage type: electrochemical, electromechanical, thermal, and hydrogen.¹ Pumped hydro is not shown because its global capacity is much larger than the capacity of the other technologies. These technologies can be grouped into power applications (short duration or discharge time, such as Li-ion batteries) and energy applications (long duration or discharge time, such as CAES). Excluding pumped hydro, the technologies with the largest deployed capacities are molten salt thermal storage (associated with concentrating solar power plants), CAES, and Li-ion batteries.

¹ These data are from the DOE Energy Storage Database, an open-access source of energy storage project information that allows users to contribute data through a third-party vetting process; see the appendix for the figure data.

Average System Power Capacity (kW)

Figure 1. Average characteristics of energy storage systems built worldwide between 1958 and 2017, by technology, from the DOE Energy Storage Database (2018), sample size = 1,041 (pumped hydro not shown because of its very large global capacity)

Figure 2 shows the rapid recent growth of Li-ion energy storage. The first recorded utility-scale Li-ion project, the 1-MW Altairnano-PJM Battery Ancillary Services Demo in Pennsylvania, was built in 2008. Between 2008 and 2015, Li-ion capacity grew at a compound annual growth rate of 173% in terms of cumulative capacity, and Li-ion capacity accounted for 89% of annual energy storage capacity in 2015. The data for 2016 and 2017 are preliminary and incomplete, because some projects built in this time frame are still being verified in the database.

Figure 2. Annual capacities of energy storage systems built worldwide between 2005 and 2017, by technology, from the DOE Energy Storage Database (2018)²

² The data for 2016 and 2017 are preliminary and incomplete, because some projects built in this time frame are still being verified in the database.

3 Lithium-Ion Battery Storage Trends

Utilities have begun adopting Li-ion storage because of the technology's high roundtrip efficiency, high power density, ample supply chain availability, falling cell and system costs, and favorable performance metrics. Most Li-ion applications to date have provided short-duration power and grid stabilization, capturing value from various services including frequency response, voltage regulation, spinning reserves, transmission deferment, peak shaving, and demand response—and often providing a positive rate of return through this value stacking. Worldwide, Li-ion systems have an average duration of 1.6 hours and a power rating of 2.8 MW per system (Figure 1). Providing load shifting will require larger battery packs, which currently account for the largest share of system cost.

The United States is the world's leader in Li-ion storage deployment, mostly because of utilityscale storage systems. Between 2008 and 2017, it accounted for 40% of cumulative global Li-ion capacity (Figure 3). Of the U.S. Li-ion capacity through 2017, approximately 495 MW (92% of the capacity) was deployed in the utility-scale sector (systems larger than 1,000 kW), 8% in the commercial sector (systems of 10–1,000 kW), and less than 1% in the residential sector (systems smaller than 10 kW), as shown in Figure 4.

Figure 3. Li-ion storage deployment by region, 2008–2017 (DOE Energy Storage Database 2018)³

³ The data for 2016 and 2017 are preliminary and incomplete owing to ongoing project verification for those years.

Figure 4. U.S. Li-ion energy storage by sector, 2008–2017 (DOE Energy Storage Database 2018)⁴

Figure 5 and Table 1 characterize U.S. Li-ion storage systems by sector. On average, utility-scale systems have a power rating of 9.9 MW and a duration of 1.7 hours. The utility-scale duration varies from about 0.5 to 4 hours between the 10th and 90th percentiles. For this reason, we model four utility-scale Li-ion storage duration cases: 0.5, 1, 2, and 4 hours. At the short end of the duration spectrum, the storage would mainly be used to maintain the real-time balance between generation and load as well as smooth short-term variations in voltage and current for frequency response. At the long end, the storage could defer transmission and distribution upgrades as well as mitigate variable energy output caused by renewable generation.

In this report, we focus on utility-scale storage systems. A previous report focused on residential storage systems (Ardani et al. 2017). For the baseline case, we use 4-hour storage according to the California Public Utilities Commission's "4-hour rule," which credits storage that can operate for 4 or more consecutive hours with the ability to provide reliable peak capacity (Denholm et al. 2017).

⁴ The data for 2016 and 2017 are preliminary and incomplete owing to ongoing project verification for those years.

System Power (kW)

Figure 5. Distributions of U.S. Li-ion energy storage power and duration, by sector, 2008–2016 (DOE Energy Storage Database 2018)⁵

Sector	Total number of projects	Total kW	Total kWh	Average duration (hours)	Average system power rating (kW)	Average system energy (kWh)
Residential (< 10 kW)	18	116	278	2.4	6	15
Commercial (10–1,000 kW)	182	49,161	101,183	2.1	270	556
Utility-Scale (> 1,000 kW)	49	494,764	844,418	1.7	9,934	17,233
Total U.S.	249	544,041	945,879	1.8	2,153	3,799

Table 1. U.S. Li-ion Energy Storage by Sector, 2008–2017 (DOE Energy Storage Database 2018	E Energy Storage Database 2018) ⁵
--	--

⁵ The data for 2016 and 2017 are preliminary and incomplete owing to ongoing project verification for those years.

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 18 of 32

4 Cost Models

Figure 6 shows the detailed bottom-up cost structure of our standalone storage model, which uses a similar structure to our previously developed PV cost model (Fu et al. 2015, 2016, 2017). Total system upfront capital costs are broken into engineering, procurement, and construction (EPC) costs and developer costs. EPC non-hardware or "soft" costs are driven by labor rates and labor productivities. We adapt engineering-design and cost-estimating models from RSMeans (2017) to determine the EPC hardware costs (including module/battery racking, mounting, wiring, containerization, and foundation) and related EPC soft costs (including related labor and equipment hours required in any given U.S. location). Section 4.1 presents additional detail on the Li-ion standalone storage model, and Section 4.2 shows results from the combined PV-plusstorage model.

BOS = balance of system, SG&A = selling, general, and administrative

Figure 6. Structure of the bottom-up cost model for standalone storage systems

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 19 of 32

4.1 Lithium-Ion Standalone Storage Cost Model

To reduce installation costs, some battery manufacturers may combine Li-ion battery cells, a battery management system, and the battery inverter in one compact unit (Sonnen Batterie 2018) as an AC battery. However, in this report, we focus on traditional DC batteries typically configured with the four major components shown in Figure 7 and Figure 8.

Figure 7. Traditional utility-scale Li-ion battery energy storage components

Table 2 lists our model inputs and assumptions for such a utility-scale energy storage system. We determined the battery size $(60 \text{ MW}_{DC})^6$ using an inverter loading ratio (ILR) of 1.3 and an inverter/storage size ratio of 1.67, based on Denholm et al. (2017).

Table 2. Utility-Scale Li-ion Energy Storage System Model Inputs and Assumptions (NREL 2018, Fu et al. 2017, Denholm et al. 2017, Blattner Energy 2018, Escondido 2018, Curry 2017, Ortiz 2016, Gupta 2018)

Model Component	Model Input
Battery total size	60 MW DC
Battery size per container	5 MWh per 40-foot container
Number of containers	48 (if duration = 4 hours)
Li-ion battery price	\$209/kWh
Duration	0.5–4 hours
Battery central inverter price	\$0.07/W
Battery inverter size	2.5 MW per inverter
Number of inverters	24
Transformer price	\$28,000 per transformer
Transformer size	2.5 MW per step-up transformer
Number of transformers	24
Foundation	76,800 square feet
Installation labor	Non-union at rates from Bureau of Labor Statistics survey average by state (BLS 2018)
Sales tax	7.5%
EPC overhead (% of equipment and labor costs)	8.67% for equipment and material (except for transmission line costs); 23%–69% for labor costs: varies by labor activity
Developer overhead	3% of EPC cost
Land acquisition	\$250,000
Interconnection	\$0.03/W
Permitting	\$295,000 per system
Contingency	3% of EPC cost
EPC/developer net profit	5% of total installation cost (EPC + developer costs)

⁶ For a 100-MW PV system with ILR = 1.3, the inverter size must be 77 MW AC (100 MW/1.3). Using the inverter/storage size ratio (1.67), the storage power capacity must be 46 MW AC (77/1.67). Thus, to match a 100-MW PV system, the storage power capacity must be 60 MW DC (46×1.3).

We use these inputs to calculate energy storage cost via the following equation⁷:

Energy storage installation cost
$$\left(\frac{\$}{kWh}\right) =$$

$$Battery \ cost \ \left(\frac{\$}{kWh}\right) + \frac{Other \ cost \ components \ (\$) \ such \ as \ battery \ inverter \ and \ labor}{Storage \ system \ size \ (kW) \times Duration \ (hours)}$$

Figure 9 and Table 3 show the resulting \$/kWh costs for 60-MW Li-ion energy storage systems, which vary from \$380/kWh (4-hour duration) to \$895/kWh (0.5-hour duration). Because the perenergy-unit battery cost remains constant at \$209/kWh, the total battery cost—and the proportion of the cost attributed to the battery—decrease as system duration decreases. For example, the battery cost accounts for 55% of total system cost in the 4-hour system, but only 23% in the 0.5-hour system. At the same time, non-battery cost categories accounts for an increasing proportion of the system cost as duration declines.

Figure 9. 2018 U.S. utility-scale Li-ion battery standalone storage costs for durations of 0.5–4 hours (60 MW_{DC})

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

⁷ This equation is only for the energy storage installation cost calculation. For levelized cost of storage (LCOS), the equation would be different. LCOS is not covered in this report.

	60-MW, 4-hour Duration, 240-MWh			60-MW, 2-hour I	Duration, 12	0-MWh	60-MW, 1-hour I	Duration, 60	-MWh	60-MW, 0.5-hour Duration, 30-MWh		
Model Component	Total Cost (\$)	\$/kWh	\$/W	Total Cost (\$)	\$/kWh	\$/W	Total Cost (\$)	\$/kWh	\$/W	Total Cost (\$)	\$/kWh	\$/W
Li-ion battery	50,160,000	209	0.84	25,080,000	209	0.42	12,540,000	209	0.21	6,270,000	209	0.10
Battery central inverter	4,200,000	18	0.07	4,200,000	35	0.07	4,200,000	70	0.07	4,200,000	140	0.07
Structural BOS	3,121,131	13	0.05	1,813,452	15	0.03	1,159,612	19	0.02	832,692	28	0.01
Electrical BOS	8,602,825	36	0.14	6,119,167	51	0.10	4,877,337	81	0.08	4,256,423	142	0.07
Installation labor & equipment	5,479,149	23	0.09	4,322,275	36	0.07	3,743,838	62	0.06	3,454,619	115	0.06
EPC overhead	2,775,545	12	0.05	1,948,565	16	0.03	1,535,075	26	0.03	1,328,330	44	0.02
Sales tax	5,293,460	22	0.09	3,083,292	26	0.05	1,978,209	33	0.03	1,425,667	48	0.02
∑ EPC cost	79,632,110	332	1.33	46,566,751	388	0.78	30,034,071	501	0.50	21,767,732	726	0.36
Land acquisition	250,000	1	0.00	250,000	2	0.00	250,000	4	0.00	250,000	8	0.00
Permitting fee	295,289	1	0.00	295,289	2	0.00	295,289	5	0.00	295,289	10	0.00
Interconnection fee	1,802,363	8	0.03	1,802,363	15	0.03	1,802,363	30	0.03	1,802,363	60	0.03
Contingency	2,477,135	10	0.04	1,476,303	12	0.02	975,887	16	0.02	725,679	24	0.01
Developer overhead	2,477,135	10	0.04	1,476,303	12	0.02	975,887	16	0.02	725,679	24	0.01
EPC/developer net profit	4,346,702	18	0.07	2,593,350	22	0.04	1,716,675	29	0.03	1,278,337	43	0.02
∑ Developer cost	11,648,623	49	0.19	7,893,608	66	0.13	6,016,101	100	0.10	5,077,347	169	0.08
∑ Total energy storage system cost	91,280,733	380	1.52	54,460,359	454	0.91	36,050,172	601	0.60	26,845,079	895	0.45

Table 3. Detailed Cost Breakdown for a 60-MW U.S. Li-ion Standalone Storage System with Durations of 0.5–4 Hours

4.2 PV-Plus-Storage System Cost Model

Here we combine our energy storage cost model with our PV system cost model in various configurations: 1) co-located PV-plus-storage systems vs. PV-plus-storage systems in different locations, and 2) DC-coupled vs. AC-coupled battery configurations for the co-located PV-plus-storage systems. As shown in Table 4, co-location enables sharing of several hardware components between the PV and energy storage systems, which can reduce costs. Co-location can also reduce soft costs related to site preparation, land acquisition, installation labor, permitting, interconnection, and EPC/developer overhead and profit.

Model Component	Co-located PV-Plus-Storage	PV-Plus-Storage in Different Sites
Site preparation ⁸	Once	Twice
Land acquisition cost	Lower	Higher
Hardware sharing between PV and energy storage	Yes (step-up transformer, switchgear, monitor, and controls)	No
Installation labor cost	Lower (due to hardware sharing and single labor mobilization)	Higher
EPC/developer overhead and profit	Lower (due to lower labor cost, BOS, and total system cost)	Higher
Interconnection and permitting	Once	Twice

Table 4. Cost Factors for Siting PV and Storage Together vs. Separately (NREL 2018, Blattne
Energy 2018, Ardani et al. 2017)

When PV and battery storage are co-located, the subsystems can be connected by a DC-coupled or AC-coupled configuration (Figure 10). A DC-coupled system needs only one bidirectional inverter, connects battery storage directly to the PV array, and enables the battery to charge and discharge from the grid. On the other hand, an AC-coupled system needs both a PV inverter and a bidirectional inverter, and there are multiple conversion steps between DC and AC to charge or discharge the battery. Also, the transmission line could be used for both PV and battery storage systems.

The advantages of the DC-coupled system include the following:

- 1. A DC-coupled system uses only a single bidirectional inverter (Table 5), thus reducing costs for the inverter, inverter wiring, and inverter housing.
- 2. Because of the extra conversion between DC and AC, an AC-coupled system may have lower roundtrip efficiency for battery charging compared with a DC-coupled system, which charges the battery directly. However, as power electronics are becoming more efficient, the actual efficiency difference is becoming smaller (Enphase 2018).

⁸ Site preparation is a sub-category under labor cost, so it is not shown in the cost breakdown chart.

3. Because the battery is connected directly to the solar array, excess PV generation that would otherwise be clipped by an AC-coupled system at the inverter level can be sent directly to the battery, which could improve system economics (DiOrio 2018).

Figure 10. DC-coupled and AC-coupled PV-plus-storage system configurations

Model Component	DC-Coupled Configuration	AC-Coupled Configuration
Number of inverters	1 (bidirectional inverter for battery)	2 (bidirectional inverter for battery plus grid-tied inverter for PV), resulting in higher costs for the inverter, inverter wiring, and inverter housing
Battery rack size	Smaller (because battery is directly connected to PV), resulting in more heating, ventilating, and air conditioning (HVAC) and fire-suppression systems required	Larger
Structural BOS	More (due to smaller battery rack size)	Less
Electrical BOS	Less (but needs additional DC-to-DC converters)	More (due to additional wiring for inverters)
Installation labor cost	More (due to smaller battery rack size and more skilled labor and labor hours required for DC work)	Less
EPC overhead	More (due to higher installation labor cost)	Less
Sales tax	Less	More (due to higher total hardware costs)
EPC/developer profit	Less	More (due to higher total EPC and developer costs)

Table 5. Comparison of DC and AC Coupling for PV-Plus-Storage Systems (Denholm et al. 2017,Ardani et al. 2017, Cole et al. 2016)

The advantages of the AC-coupled system include the following:

- 1. Because the battery racks are not directly connected to the PV system in AC-coupled systems, these systems can use larger battery racks and thus reduce the number of HVAC and fire-suppression systems in the containers. This feature also reduces installation labor costs compared with DC-coupled systems.
- 2. For a retrofit (i.e., adding battery storage to an existing PV array), an AC-coupled battery may be more practical than a DC-coupled battery, because DC-coupled systems require installers to replace the existing PV inverter with a bidirectional inverter. Thus, the additional costs due to replacing the inverter and rewiring the system could make retrofit costs higher for a DC-coupled system compared with an AC-coupled system (Ardani et al. 2017). In addition, AC-coupled systems enable the option of upgrading the PV and battery separately, because these systems are independent of one another.
- 3. Because AC-coupled systems have separated PV and battery systems, installers have more flexibility to adjust the battery location. For instance, DC-coupled systems require batteries to be installed next to the bidirectional inverter, and the resulting need for maintenance crews to enter the PV field can make maintenance more time consuming. Because AC-coupled systems can have batteries located outside of the PV field, maintenance work can be quicker and easier.

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 26 of 32

5 Model Results and Summary

Figure 11 summarizes our model results for several system types and configurations:

- Standalone 100-MW PV system with one-axis tracking (\$111 million)
- Standalone 60-MW/240-MWh, 4-hour-duration energy storage system (\$91 million)
- Co-located, DC-coupled PV (100 MW) plus storage (60 MW/240 MWh, 4-hour duration) system (\$186 million)
- Co-located, AC-coupled PV (100 MW) plus storage (60 MW/240 MWh, 4-hour duration) system (\$188 million)
- PV (100 MW) plus storage (60 MW/240 MWh, 4-hour duration) system with PV and storage components sited in different locations (\$202 million)

Table 6 shows detailed costs for the three PV-plus-storage configurations. Co-locating the PV and storage subsystems produces cost savings by reducing costs related to site preparation, land acquisition, permitting, interconnection, installation labor, hardware (via sharing of hardware such as switchgears, transformers, and controls), overhead, and profit. The cost of the co-located, DC-coupled system is 8% lower than the cost of the system with PV and storage sited separately, and the cost of the co-located, AC-coupled system is 7% lower.

Using DC-coupling rather than AC-coupling results in a 1% lower total cost, which is the net result of cost differences between DC-coupling and AC-coupling in the categories of solar inverter, structural BOS, electrical BOS, labor, EPC and developer overhead, sales tax, contingency, and profit. For an actual project, however, cost savings may not be the only factor in choosing DC or AC coupling. Additional factors—such as retrofit considerations, system performance (including energy loss due to clipping), design flexibility, and operations and maintenance—should be considered.

In summary, the National Renewable Energy Laboratory's new bottom-up cost model can be used to assess the costs of utility-scale PV-plus-storage systems using various configurations. The itemized cost savings could incentivize deployment of co-located PV-plus-storage systems. In addition, the model can help industry representatives evaluate the cost impacts of various battery durations for grid applications. Finally, the model can be used to estimate future potential cost-reduction opportunities for PV-plus-storage systems, helping to guide research and development aimed at advancing cost-effective system configurations. In the future, we will continue updating the model inputs and expand our model to cover more economic metrics, such as LCOS (Levelized Cost of Storage).

Docket No. E002/M-19-666 Fresh Energy IR No. 5 Attachmen A Page 27 of 32

Figure 11. 2018 Cost benchmarks for PV-plus-storage systems (4-hour duration) in different sites and the same site (DC-coupled and AC-coupled cases)

Model Component		Total Cost	
	100-MW PV Plus 60- MW/240-MWh Battery, DC-Coupled, Co-located	100-MW PV Plus 60- MW/240-MWh Battery, AC-Coupled, Co-located	100-MW PV Plus 60- MW/240-MWh Battery, In Different Sites
PV module	\$35,000,000	\$35,000,000	\$35,000,000
Li-ion battery	\$50,160,000	\$50,160,000	\$50,160,000
Solar inverter	n/a	\$6,153,846	\$6,153,846
Bidirectional inverter	\$4,200,000	\$4,200,000	\$4,200,000
Structural BOS	\$18,346,829	\$17,685,150	\$17,735,564
Electrical BOS	\$12,987,780	\$13,115,425	\$18,649,611
Installation labor & equipment	\$18,863,868.05	\$16,326,680.01	\$19,058,910
EPC overhead	\$9,879,642	\$8,550,831	\$9,981,792
Sales tax	\$9,178,323	\$9,605,687	\$10,030,372
∑ EPC cost	\$158,616,442	\$160,797,619	\$170,970,095
Land acquisition	\$3,000,000	\$3,000,000	\$3,250,000
Permitting fee	\$295,289	\$295,289	\$590,578
Interconnection fee	\$2,919,545	\$2,919,545	\$4,721,908
Transmission line	\$1,883,302	\$1,883,302	\$1,883,302
Contingency	\$5,001,437	\$5,066,873	\$5,455,816
Developer overhead	\$5,001,437	\$5,066,873	\$5,455,816
EPC/developer net profit	\$8,835,873	\$8,951,475	\$9,616,376
∑ Developer cost	\$26,936,884	\$27,183,357	\$30,973,796
∑ Total energy storage system cost	\$185,553,326	\$187,980,975	\$201,943,890

Table 6. Detailed Cost Breakdown for Utility-Scale Li-ion PV-Plus-Storage Systems

References

U.S. Department of Energy website. Accessed June 20, 2018: <u>https://www.energy.gov/eere/water/history-hydropower</u>

"DOE Global Energy Storage Database." U.S. Department of Energy. Accessed January 20, 2018: <u>http://www.energystorageexchange.org/</u>.

Chen, Haisheng, Zhang, Xinjing, Liu, Jinchao, and Tang, Chunqing. 2013. *Compressed air energy storage*. Energy Storage-Technologies and Applications.

"Compressed Air Energy Storage (CAES)." Energy Storage Association. Accessed July 17, 2018: <u>http://energystorage.org/compressed-air-energy-storage-caes</u>

RSMeans. RSMeans Building Construction Cost Data 2017. RS Means Catalog No. 60012.

Fu, Ran, David Feldman, Robert Margolis, Mike Woodhouse, and Kristen Ardani. 2017. *U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20- 68925. <u>https://www.nrel.gov/docs/fy17osti/68925.pdf</u>.

Fu, Ran, Donald Chung, Travis Lowder, David Feldman, Kristen Ardani, and Robert Margolis, 2016. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-66532. https://www.nrel.gov/docs/fy16osti/66532.pdf.

Fu, Ran, Ted L. James, Donald Chung, Douglas Gagne, Anthony Lopez, and Aron Dobos. 2015. "Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost (\$/W) and LCOE (\$/kWh)." 42nd Photovoltaic Specialist Conference, New Orleans, LA, June 2015.

NREL. 2018. NREL dialogues and interviews with energy storage industry collaborators. Golden, CO: National Renewable Energy Laboratory.

Sonnen Batterie website. Accessed April 10, 2018: <u>https://sonnen-batterie.com/en-us/sonnenbatterie</u>.

NAGF/ESIG Workshop 2018. Battery Energy Storage Technology and Design.

Denholm, Paul, Josh Eichman, and Robert Margolis. 2017. *Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-68737. <u>https://www.nrel.gov/docs/fy17osti/68737.pdf</u>.

Blattner Energy website. Accessed April 15, 2018: <u>http://blattnerenergy.com/projects/lee-dekalb-ess/</u>.

"Escondido to Host 30-Megawatt Battery." 2016, August 25. *Times-Advocate*. Accessed April 16, 2018: <u>https://www.times-advocate.com/articles/escondido-to-host-30-megawatt-battery/</u>.

Curry, Clair. 2017, July 5. *Lithium-ion Battery Costs and Market*. Bloomberg New Energy Finance. <u>https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.pdf</u>.

Ortiz, Luis. 2016. *Grid-Scale Energy Storage Balance of System 2015–2020: Architectures, Costs and Players*. Greentech Media. <u>https://www.greentechmedia.com/research/report/grid-scale-energy-storage-balance-of-systems-2015-2020</u>.

Gupta, Mitalee. 2018. U.S. Front-of-the-Meter Energy Storage System Prices, 2018–2022. Greentech Media.

Bureau of Labor Statistics (BLS) website. Accessed July 17, 2018: <u>https://www.bls.gov/bls/blswage.htm</u>

Ardani, Kristen, Eric O'Shaughnessy, Ran Fu, Chris McClurg, Joshua Huneycutt, and Robert Margolis. 2017. *Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A20- 67474. <u>https://www.nrel.gov/docs/fy17osti/67474.pdf</u>.

Elgqvist, Emma, Kate Anderson, and Edward Settle. 2018. *Federal Tax Incentives for Energy Storage Systems*. Golden, CO: National Renewable Energy Laboratory. NREL/FS-7A40-70384. https://www.nrel.gov/docs/fy18osti/70384.pdf.

Enphase website. Accessed April 15, 2018: <u>https://enphase.com/en-us/products-and-services/storage</u>.

DiOrio, Nicholas, Hobbs, Will. 2018. *Economic dispatch for DC-connected battery systems on large PV plants*. 10th PVPMC, Albuquerque, NM <u>https://pvpmc.sandia.gov/download/6559/</u>

Cole, Wesley J., Cara Marcy, Venkat K. Krishnan, and Robert Margolis, "Utility-scale lithiumion storage cost projections for use in capacity expansion models." 43nd Photovoltaic Specialist Conference, Denver, CO, September 2016.

Appendix. Figure Data from DOE Energy Storage Database Figure 1 Data

Specific Type	Category	Number of projects	Total kW	Total kWh	Average Duration (hours)	Average System Power Rating (kW)	Average System Energy (kWh)
Lead-acid Battery	Electro-chemical	79	194,300	216,578	1.1	2,459	2,741
Li-ion Battery	Electro-chemical	523	1,485,898	2,321,097	1.6	2,841	4,438
Flow Battery	Electro-chemical	101	322,702	1,251,215	3.9	3,195	12,388
Sodium-based Battery	Electro-chemical	71	168,634	1,090,820	6.5	2,375	15,364
Nickel-based Battery	Electro-chemical	6	30,385	7,925	0.3	5,064	1,321
Zinc-air Battery	Electro-chemical	4	73,750	297,008	4.0	18,438	74,252
Compressed Air Storage	Electro- mechanical	15	1,592,590	39,974,670	25.1	106,173	2,664,978
Flywheel	Electro- mechanical	46	961,435	103,414	0.1	20,901	2,248
Molten Salt Thermal Storage	Thermal	41	2,850,520	19,845,210	7.0	69,525	484,030
Heat Thermal Storage	Thermal	20	129,740	338,430	2.6	6,487	16,922
Ice Thermal Storage	Thermal	110	99,675	703,363	7.1	906	6,394
Chilled Water Thermal Storage	Thermal	20	135,206	1,421,741	10.5	6,760	71,087
Hydrogen Storage	Hydrogen	5	8,920	100,060	11.2	1,784	20,012
Total Non-Hydro Storage		1,041	8,053,755	67,671,531	8.4	7,737	65,006
Open-loop Pumped Hydro	Pumped Hydro	69	39,321,700	390,411,510	9.9	569,880	5,658,138
Closed-loop Pumped Hydro	Pumped Hydro	7	4,288,006	31,533,369	7.4	612,572	4,504,767
Total Hydro Storage (not shown in Figure 1)		76	43,609,706	421,944,879	9.7	573,812	5,551,906

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Figure 2 Data

Worldwide (kW)		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Lead-acid Battery	Electro- chemical	0	16	60	0	12	1,000	44,625	445	3,010	2,114	1,050	0	0
Li-ion Battery	Electro- chemical	0	0	0	1,000	2,000	5,400	1,662	21,020	17,116	90,748	264,615	96,110	104,000
Flow Battery	Electro- chemical	0	0	100	0	0	10	800	5,190	370	30	300	200,200	10,200
Sodium-based Battery	Electro- chemical	0	1,000	0	0	0	0	1,195	298	0	44,555	10	11	800
Nickel-based Battery	Electro- chemical	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc-air Battery	Electro- chemical	0	0	0	0	0	0	0	0	0	0	62,500	0	0
Compressed Air Storage	Electro- mechanical	0	0	0	0	0	0	350	0	201,000	500	1,000	0	0
Flywheel	Electro- mechanical	1,100	0	500	0	500	500	1,600	100	2,000	290	0	0	0
Molten Salt Thermal Storage	Thermal Storage	0	49,900	0	255,720	269,900	330,000	390,000	100,000	160,000	470,000	0	100,000	0
Heat Thermal Storage	Thermal Storage	11,000	2,000	1,500	0	1,500	0	3,600	61,155	12,000	10,100	0	0	0
lce Thermal Storage	Thermal Storage	0	0	5,320	0	375	0	0	0	1,000	0	0	0	0
Chilled Water Thermal Storage	Thermal Storage	0	0	0	90,000	0	0	0	0	0	0	0	0	0
Hydrogen Storage	Hydrogen Storage	0	0	0	0	0	0	0	0	1,320	0	0	0	0
Total Non- Hydro Storage		12,100	52,916	7,480	346,720	274,287	336,910	443,832	188,208	397,816	618,337	329,475	396,321	115,000

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Not Public Document – Not For Public Disclosure
Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	8
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> <u>Reference:</u> Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 108.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the values in Table 25 - ISI Capital Expenditures – Distribution.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

Please refer to Attachment A – ISI Cost.

Preparer:	Molly Dimond																				
Title:	Investment Delivery																				
Department:	System Planning and Strategy																				
Telephone:	303.571.3232																				
Date:	January 23, 2020																				
OpCO	Group1	Primary Work Group	Work Description	CPU	Unit Description	2021 QTY	2022 QTY	2023 QTY	2024 QTY	2021 Spend	2022 Spend	2023 Spend	2024 Spend	Pop. +	Min Pop Qty Id 2021	Pop. +	Min Pop Qty Id 2022	Cap Adds %	CapAdds 2021	Cap Adds C %	ap Adds 2022
------	-------------------	-----------------------	---------------------------------	--------------	------------------------------	-------------	-------------	-------------	-------------	------------	------------	------------	------------	--------	------------------------	--------	------------------------	------------	--------------	--------------------	--------------
NSPM	Substation	Transmission	Transformer Replacement	2,000,000 P	er Transformer	3	3	3	3	5,000,000	5,000,000	5,000,000	5,000,000	+2	5	+1	4	1	5,000,000	0.5	5,000,000
NSPM	Substation	Transmission	Substation Asset Renewal	20,000,000 P	er 3 transformer substation	0.350	0.650	0.650	0.650	7,000,000	13,000,000	13,000,000	13,000,000	+2	2	+1	2	1	7,000,000	1	13,000,000
NSPM	Substation	Transmission	High Consequence Risks	10,000,000 P	er Project	-	-	-	-	-	-	-	-	+2	2	+1	1	0.5	-	0.5	-
NSPM	Substation	Transmission	Mobile Xfmr/Gear Purchase	2,500,000 p	er xfmr	-	-	-	-	-	-	-	-	+1	1	+1	1	0.5	-	0.5	-
NSPM	Underground	DistOps	Mainline Cable Replacement	1,050,000 P	er Mile	7	7	7	7	7,087,500	7,770,000	7,770,000	7,770,000	50%	10.13	50%	11.10	0.9	6,378,750	0.8	7,701,750
NSPM	Underground	DistOps	URD Cable Replacement	210,000 P	er Mile	24	12	12	12	5,040,000	2,520,000	2,520,000	2,520,000	20%	28.80	20%	14.40	0.9	4,536,000	0.8	2,772,000
NSPM	Underground	DistOps	Cable Assessment	100,000 P	er Mile	70	60	60	60	7,000,000	6,000,000	6,000,000	6,000,000	20%	84.0	20%	72.0	0.8	5,600,000	0.8	6,200,000
NSPM	Underground	DistOps	St. Paul Tunnel Work	3,500,000 a	nnually	1	1.4	1.4	1.4	4,900,000	5,005,000	5,005,000	5,005,000		1.7		1.7	0	3,000,000	0	3,000,000
NSPM	Underground	DistOps	Feeder Exit Capacity	3,000,000 a	nnually	1.3	1	1	1	3,750,000	3,000,000	3,000,000	3,000,000		1.5		1.2	0.8	3,000,000	0.8	3,150,000
NSPM	Underground	DistOps	Network Monitoring	1,500,000		1	2	2	2	2,025,000	2,325,000	2,325,000	2,325,000		1.6		1.9	0	-	0	1,000,000
NSPM	Underground	DistOps	Purchases / Tooling	4,500,000		1	0	0	0	4,500,000	180,000	180,000	180,000		1.2			1	4,500,000	1	180,000
NSPM	Overhead Tap	DistOps	Targeted Undergrounding	912,000 P	er Mile	20	30	30	30	18,240,000	27,360,000	27,360,000	27,360,000	50%	30.00	50%	45.00	0.6	10,944,000	0.6	23,712,000
NSPM	Overhead Tap	DistOps	Low Cost Reclosers	4,200 P	er Fuse	650	595	595	595	2,730,000	2,499,000	2,499,000	2,499,000	40%	910.0	40%	833.0	0.8	2,184,000	0.8	2,545,200
NSPM	Overhead Tap	DistOps	Pole Top Reinforcements	2,700 P	er Pole	1,000	900	900	900	2,700,000	2,430,000	2,430,000	2,430,000	10%	1,100.0	10%	990.0	0.8	2,160,000	0.8	2,484,000
NSPM	Overhead Tap	DistOps	Transformer and Secondary Repl	15,000 P	er Transformer and Secondary	165	165	165	165	2,475,000	2,475,000	2,475,000	2,475,000	20%	198.0	20%	198.0	0.8	1,980,000	0.8	2,475,000
NSPM	Overhead Tap	DistOps	High Customer Count Taps	Р	er Tap					3,000,000	3,000,000	3,000,000	3,000,000	20%		20%		0.8	2,400,000	0.8	3,000,000
NSPM	Overhead Mainline	DistOps	Pole Fire Mitigation	4,200 P	er Pole	600	480	480	480	2,520,000	2,016,000	2,016,000	2,016,000	20%	720.0	20%	576.0	0.8	2,016,000	0.8	2,116,800
NSPM	Overhead Mainline	DistOps	Lightning Protection Replacemen	1,000 P	er Location	1,000	1,000	1,000	1,000	1,000,000	1,000,000	1,000,000	1,000,000	20%	1,200.0	20%	1,200.0	0.8	800,000	0.8	1,000,000
NSPM	Overhead Mainline	DistOps	OH Rebuilds	150,000 p	er mile	-	-	-	-	-	-	-	-					0.8	-	0.8	-
NSPM	Overhead Tap	DistOps	Community Resiliency			TBD	TBD	TBD	TBD	2,000,000	3,000,000	3,000,000	3,000,000					0.8	1,600,000	0.8	2,800,000
										80,967,500	88,580,000	88,580,000	88,580,000								

	Information Request No.	10
E002/M-19-666		
Fresh Energy		
Isabel Ricker		
January 13, 2020		
	E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020	Information Request No. E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020

<u>Question:</u> <u>Reference:</u> Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 111.

Request:

Please provide the average customers per mile of tap line in the proposed pilot areas for undergrounding overhead tap lines.

Response:

As discussed in our response to Fresh Energy Information Request No. 2, while we have identified areas of focus for the ISI and preliminary categories of work, we will be refining those plans to be more specific over time. As such, we have not identified specific pilot areas or created plans that are sufficiently refined to identify specific feeders, taps, etc. Therefore, we are not presently able to provide average customer counts per mile for the targeted underground program.

That said, our preliminary plans are based on areas that are served by older conductor types and are considered high-density/single family residences. We will continue our analysis of performance and reliability results, equipment and asset age, and type and construction method to identify the areas where we believe we will achieve the greatest positive impacts for customers and system resilience. After we complete this process, our operational groups will review the identified areas and plans for feasibility of system design, construction, impact to customers and impact to municipalities. Concurrent with these internal processes, we will also be factoring in external feedback from customers and the communities we serve.

Preparer:Molly DimondTitle:Investment DeliveryDepartment:Electric Distribution Engineering

Telephone:	303.571.3232
Date:	January 23, 2020

Xcel Energy		Information Request No.	12
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> <u>Reference:</u> Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 113.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the Company's claim that it has 15,900 25 kVA transformers that are overloaded during peak periods and have more than 11 customers connected to them.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

We used data from several of our information systems to determine the quantity of customers per transformer, size of transformers and loading on each transformer: the Customer Resource System (CRS), the Geospatial Information System (GIS), and our Itron Distribution Asset Analysis Suite (DAA). CRS associates every customer's energy usage to a particular transformer. The GIS tool can determine the number of customers on each transformer and the type of transformer associated to each customer. DAA builds transformer load profiles using a bottom-up approach to determine a peak load on each transformer, by coupling each customers' energy usage with the appropriate load profile, and summing the resulting profiles.

We analyzed the typical single phase overhead transformers sizes (25kVA, 37.5kVA, 50kVA) to start to understand the potential future overload risk. The transformers studied represent 63% of the 94,000 overhead transformers. Table [FE-12] 1 below provides counts of the transformers we analyzed by size.

	Transfe	ormer Size	e (kVA)	
Total # of Overhead Single Phase Transformers	25	37.5	50	Total
94,142	33.40%	17.60%	11.90%	62.90%

Table [FE-12] 1:	Transformers Ar	nalyzed
------------------	-----------------	---------

Table [FE-12] 2 below outlines the customer counts and averages associated with the transformers we analyzed, along with the average loading for the group of transformers at each of the analyzed kVA levels.

Overhead Transformers					
	# of Xfmrs	31,424			
25 1-X/A	# of Customers	195,143			
23 KVA	Avg Cust Per Xfmr	6.21			
	Avg % Loading	127%			
	# of Xfmrs	16,571			
27 5 1-VA	# of Customers	185,228			
57.5 KVA	Avg Cust Per Xfmr	11.18			
	Avg % Loading	133%			
	# of Xfmrs	11,182			
50 1-X/A	# Of Customers	137,271			
50 KVA	Avg Cust Per Xfmr	12.28			
	Avg % Loading	104%			

Table [FE-12] 2: Transformer-Customer Association – Analyzed Transformers

Each transformer was reviewed for an estimated overload based on DAA and the associated customer count which we summarize in Table [FE-12] 3 below.

Table [FE-12] 3: Total Transformers – Peak Load at Least 100 Percent and 11 or more customers

# of Transformers	Percentage
15,837	17%

We note that Automated Metering Infrastructure (AMI) will allow for improved accuracy and understanding of existing and potential transformer overloads and customer voltage issues. Instead of coupling each customers' energy usage with the appropriate load profile, and summing the resulting profiles, we will be able to use actual coincidental customer demand data to create a transformer loading profile, with peak values – as well as a 24-hour view, including seasonal changes. We will also have the ability to flag actual voltage excursions.

Preparer:	Betsy Coppock
Title:	Principal Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3537
Date:	January 23, 2020

Xcel Energy		Information Request No.	13
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 122.

Request:

Please provide the total number of historical substation transformer failures, failure rate (substation transformer failures/total substation transformers in service) each year 2011-2019. For each historical substation transformer failure event, please also provide the customers interrupted and customer-minutes of outage.

Response:

Unlike the transmission system, the distribution system is not fully redundant – and so many system component failures directly impact customers. The failure of a Substation Transformer is considered a low probability but high risk event. This means that a failure is unlikely but if it does occur it will have a significant impact on the system and our customers.

As a high consequence system component, we monitor the health of Substation Transformers by performing a dissolved gas analysis (DGA) of the transformer fleet on a regular basis. Transformer readings that indicate the unit is at risk of failure may be proactively taken out of service and replaced. Another factor to consider is the asset life. The average useful life of a distribution substation transformer is 40 years; beyond 40 years, the probability of failure begins to increase. We performed our most recent asset study in 2017. At that time, the Company had 129 transformers (or 28 percent) that were older than 45 years.¹

That said, we provide substation transformer failure information in Table [FE-13] 1

¹ As of the end of 2019, we had approximately 540 distribution substation transformers on the NSP system.

below, as follows:

- Sustained transformer failures, which are failures that resulted in customer outages. For these we also provide the associated customer minutes out,
- Momentary transformer failures, which are failures but we were able to reconfigure the system to avoid customer outages until repairs or replacements could be made, and
- Imminent failures, which are replacements we made based on predictive signs of failure.

Table [FE-13] 1: Distribution Substation Transformer Failures – 2011 to 2019NSPM Operating Company

	2011	2012	2013	2014	2015	2016	2017	2018	2019
Sustained Transformer Failures	2	-	1	2	3	1	1	3	-
Customers Impacted	5,293	-	477	7,043	27,426	703	860	12,357	-
Estimated CMO	914,897	-	463,644	2,945,187	4,506,707	119,510	52,460	1,054,270	-
Momentary Transformer Failures	-	-	1	-	-	1	2	1	-
Customers Impacted	-	-	8,744	-	-	7,570	20,700	1,027	-
Transformers Taken out of Service Due to Imminent Signs of Failure	1	3	3	6	4	-	-	2	-

With approximately 540 distribution substation transformers on the system as of the end of 2019, the "failure rate" of this system asset is low. However, as we discuss in our response to FE-2, we have designed a low failure rate into the system due to the high consequence of a substation level outage on our customers.

Preparer:	Molly Dimond
Title:	Investment Delivery
Department:	System Planning and Strategy
Telephone:	303.571.3232
Date:	January 23, 2020

Betsy Coppock Principal Engineer Electric Distribution Engineering 303.571.3537

Xcel Energy		Information Request No.	15
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP).

Request:

Please provide the expected improvement in SAIDI, SAIFI and CAIDI from the ISI programs, and provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the Company's estimates of the expected reliability improvement.

Response:

As we have discussed in our other responses to this group of Fresh Energy Information Requests, the details of the ISI program are still in development. As such, we have not completed any specific analyses of associated impacts to reliability metrics. As we work to refine our ISI program over time to include specific work plans, part of that work will involve developing appropriate measurements to assess the impacts of the ISI component programs. That said, we do not yet have established measures of expected benefits outside of the general benefits conveyed in the IDP.

We note generally, as also discussed in our response to FE-7, SAIDI, CAIDI and SAIFI do not fully capture the customer experience. They are more appropriate as measures of the overall reliability of our system, but even from a system performance perspective – they do not fully capture our performance.¹ For example, an individual customer that is served by an overhead tap system in a storm-prone area may experience multiple interruptions per year. Interruptions stemming from storms

¹ For example, our proposed fault location isolation and service restoration (FLISR) advanced grid investment will primarily impact our "all-day" reliability performance, not the Company's storm-normalized performance.

would be "storm-normalized" out of the SAIDI, SAIFI, and CAIDI metrics – yet, the customer experienced (and is likely to continue experiencing) repeated outages.

The ISI program is intended to improve system resilience and the reliability and experience of our customers – both from major events, and the parts of our system that experience multiple shorter duration events. As we develop the specific ISI program details, we will be working to identify the associated qualitative and quantitative benefits, including any associated SAID/SAIFI/CAIDI benefits. We note, however, that we will not be able to determine SAIDI/SAIFI/CAIDI benefits from particular investments with accuracy for a number of years because these all-day metrics vary greatly from year to year. Creating a reasonable comparison requires at least five years of pre- and post-investment data to compare the resiliency impact of the investments.

Preparer:	Molly Dimond
Title:	Investment Delivery
Department:	System Planning and Strategy
Telephone:	303.571.3232
Date:	January 23, 2020

	Information Request No.	16
E002/M-19-666		
Fresh Energy		
Isabel Ricker		
January 13, 2020		
	E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020	Information Request No. E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) pages 139-142.

Request:

Please describe how the Company's distribution operations will change after implementation of the proposed AGIS investments.

Response:

As discussed in the Direct Testimony of Ms. Kelly Bloch provided with the IDP, our vision for the future distribution grid is one that utilizes advances in technology to improve our monitoring and operation of the grid for the benefit of our customers. The advanced grid intelligence and security (AGIS) initiative is a comprehensive plan to advance Xcel Energy's distribution system. This modernization will start with implementing foundational advanced grid initiatives that provide immediate benefits for customers while also enabling future systems and capabilities. AGIS will help to bring about an intelligent, automated, and interactive electric distribution system that will provide operators more visibility into the system, customers greater access to timely energy information, and enable future products and services for our customers.

Our proposed AGIS investments will provide us timely and accurate information about what is happening on all portions of the grid from our substations down to the meter at each individual customer's home and business. These investments will also have automation and intelligence to address problems quickly and efficiently. In some cases, these insights will alert us to situations likely to result in an outage (such as overloaded equipment) before an outage occurs. The increased number of field sensors and devices will also provide the Company with the necessary information to continually monitor and make the necessary adjustments to the system to support increasing amounts of distributed energy resources (DER) and other electric technologies such as electric vehicles (EVs). The increasing sophistication of distribution grid assets means that they will serve a greater number of purposes and business areas, including forming the foundation for new programs and service offerings, enhanced billing and rate options, timely outage communications, and engaging digital experiences; it will also include security protocols that will detect and remedy cyber and physical threats to our system. These investments will greatly enhance our distribution system's performance and our ability to meet our customers' needs and expectations for their electric service provider now and in the future. As such, increased use of advanced grid equipment and capabilities will require new and different organizational and human resource skills and capabilities.

ADMS is foundational because it provides situational awareness and automated capabilities that sustain and improve the performance of an increasingly complex grid. Specifically, ADMS acts as a centralized decision support system that assists the control room, field operating personnel, and engineers with the monitoring, control and optimization of the electric distribution grid. Distribution will operate the advanced distribution management system (ADMS) and its applications such as fault location isolation and service restoration (FLISR) and integrated volt-var optimization (IVVO). Specifically, Distribution operates the associated equipment for these applications, such as switches, reclosers, and capacitors. The Distribution Control Center will be the primary users of the ADMS, with a recently-created Grid Management team ensuring its accuracy, availability, and effectiveness. Our Grid Management team will monitor system performance and data integrity to ensure the improvements made to GIS data continue to provide accurate ADMS solutions.

The Distribution business unit will also provide maintenance for the field-based equipment. When possible, maintenance activities such as firmware upgrades will be performed remotely. However, some of the advanced equipment will reside on poles in the "power zone," and require the specialized skills of qualified line workers to access. Field personnel may need enhanced communications and information technology skills. For example, repairing communications equipment not previously used in distribution activities will require field personnel to develop an entirely new skill set.

Related, the Information Technology (IT) function will require more resources and skills to support new types of computerized field devices. For example, traditionally, Transmission and Distribution Control Center staffs are in regular contact to achieve operational tasks; IT serves as a support function for both. The advancements of grid technology will require a more integrated IT role, including in troubleshooting advanced grid technologies in the field and back office. In addition to field and IT capability enhancements, Distribution Control Center personnel will also need to acquire new skills as the management of grid operations becomes more complex. For example, where Dispatchers have traditionally instructed field crews to make on-location changes, advanced grid technologies will allow them to perform some such actions remotely, or perhaps simply monitor automated system instructions. Some of this transition is underway as we have been incrementally advancing grid assets and customer-owned distributed energy resources (DER) has grown. However, the distribution of power beyond the substation has historically been unidirectional. As penetrations of DER get higher, Dispatchers will have to manage multidirectional power flow that is more like what Transmission operators do currently.

Advanced systems and tools will play a pivotal role in helping business areas and personnel manage practical issues and maximize the value of available data. Other functional areas and personnel will also require new systems and tools to maximize the value of data and capabilities made available by the advanced grid. Even Customer Care Center skill sets may need to change. In an advanced grid scenario, the nature of support customers may want is likely to change. As just one example, access to more detailed usage information from Advanced Metering Infrastructure (AMI) is likely to prompt customer questions on how to interpret the information, how to identify the drivers of home energy consumption, and how best to save money on time-differentiated rates. These types of calls will require new skills and competencies from Call Center agents. The advanced grid will also change the types of Demand Side Management (DSM) programs we offer, the features and capabilities of such programs, and the manner in which DSM programs will be promoted – requiring more sophisticated data analysis to develop meaningful programs and/or rates - and leveraging available technologies to maximize customer participation and thus customer and grid benefits.

We expect the impacts of advancing the grid on the Distribution and IT functions to be particularly acute during the transition period. Advanced grid upgrades take years to complete, or even decades, depending on the approach. This means that, in addition to advanced grid implementation activities that are taking place, employees in many business functions must manage two operating models – traditional and advanced – simultaneously.

That said, our proposed plans anticipate and include change management and training to ensure an effective implementation and transition.

Preparer:	Kelly Bloch
Title:	Regional Vice President
Department:	Distribution Operations
Telephone:	651-229-2435
Date:	January 23, 2020

Xcel Energy		Information Request No.	17
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 180.

Request:

Fresh Energy understands that the output from community solar gardens and distribution-connected utility-scale solar serves the load of customers closest to the solar facilities, thereby reducing the need for centralized generation to serve this load.

- A. Does the Company agree with Fresh Energy's understanding? If not, please explain.
- B. If the Company agrees with Fresh Energy's understanding, please explain the statement on p. 180 of the IDP that "The sales and peak demand forecasts are not adjusted for community solar gardens or distribution-connected utility-scale solar because these do not affect customers' loads."

Response:

A. The Company agrees in part. Electricity generation from solar gardens and distribution-connected utility-scale solar is capable of serving some of the load of customers within the same part of the distribution system where the distributed generation is located. This may or may not include the load of customers located closest to the solar facilities.

The Company also partially agrees that the output from community solar gardens and distribution-connected utility-scale solar reduces some of the need for other generation to serve that load. However, although it may reduce the need for other generation to serve some load while the distributed resource is generating, it does not eliminate the need. The Company continues to have an overarching obligation to serve that requires the Company to provide energy and capacity to meet customer needs regardless of whether the distributed resource is generating. B. The sales and peak demand forecasts are estimates of customers' expected energy and load requirements. Community solar gardens or distribution-connected utility-scale solar generation are sources of energy supply the Company uses to meet the expected load requirements. Because these sources of energy supply are not behind the customers' meters, they do not directly reduce customers' expected load and energy requirements in our sales and peak demand forecasts. In other words, we count these resources as additions to the supply-side, rather than offsets to the load-side of the equation.

Preparer:	Luke Jaramillo
Title:	Senior Energy Forecasting Analyst
Department:	Sales, Energy and Demand Forecasting
Telephone:	303-571-6239
Date:	January 23, 2020

Xcel Energy		Information Request No.	18
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 180.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact explaining how the Company extracts the impacts of customer-sited behind-the-meter solar installations in the NSP System peak demand forecast.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

Please refer to our November 1, 2019 Integrated Distributed Plan on pages 178-180 for a discussion of the development of the Company's peak demand forecast and the associated adjustments for behind-the-meter solar installations on pages 178-180. Attachment A to this response includes the calculation of how behind-the-meter solar generation is extracted from the Company's 2020-2024 peak demand forecast.

Preparer:	Luke Jaramillo
Title:	Senior Energy Forecasting
Department:	Sales, Energy and Demand
Telephone:	303-571-6239
Date:	January 23, 2020

□ Not Public Document – Not For Public Disclosure

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	19
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 187.

Request: Please provide updated values for Table 49 as of December 2019.

Response:

Table [FE-19] 1: Minnesota Distribution-Connected Distributed Energy Resources – Interconnected Resources

(As	of Decembe	er 2019)
-----	------------	----------

	<u>Comple</u>	ted Projects	<u>Queue</u>	d Projects
	MW/DC	# of Projects	MW/DC	# of Projects
Small Scale Solar PV				
Rooftop Solar	80	5,200	58	967
RDF Projects ¹	19	25	1	2
Wind	16	61	<1	9
Storage/Batteries ²	N/A	48	N/A	31
	<u>Comple</u>	ted Projects	<u>Queue</u>	d Projects
	MW/AC	# of Projects	MW/AC	# of Projects
Large Scale Solar PV				
Community Solar	656	268	241	226
Grid Scale	100	16	80 ³	1

¹ No change since July 2019

² All current battery projects within our DER process are associated with other generation projects, such as solar. As such the application does not capture gen. MW as it is accounted for in other categories.

³ Xcel Energy Petition Approval of Solar Energy Purchase Agreement with Elk Creek Solar, LLC for 80 MW Solar Generation, Docket No. E002/M-19-568. *Pending Decision*

Revised Response:

In our original response to this Information Request, we inadvertently included 80 MW of queued grid scale solar for our pending Petition for Approval of the Solar Energy Purchase Agreement with Elk Creek Solar, LLC (Docket No. E002/M-19-568). This project is transmission interconnected, not distribution connected, and has therefore been removed from the table below. The Storage/Batteries row has also been adjusted to correctly show 47 completed projects.

Table [FE-19 Revised] 1: Minnesota Distribution-Connected DistributedEnergy Resources – Interconnected Resources

MW/DC# of ProjectsMW/DC# of ProjectsSmall Scale Solar PV $Rooftop Solar$ 805,20058967RDF Projects ¹ 192512Wind1661<1		Completed Projects		<u>Queue</u>	d Projects
Small Scale Solar PVRooftop Solar805,20058967RDF Projects ¹ 192512Wind1661<19Storage/Batteries ² N/A47N/A31Completed Projects MW/ACQueued Projects MW/ACLarge Scale Solar PVVVV		MW/DC	# of Projects	MW/DC	# of Projects
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Small Scale Solar PV				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Rooftop Solar	80	5,200	58	967
Wind 16 61 <1 9 Storage/Batteries ² N/A 47 N/A 31 Completed Projects MW/AC Queued Projects MW/AC Queued Projects MW/AC Projects Large Scale Solar PV V V V V	RDF Projects ¹	19	25	1	2
Storage/Batteries ² N/A 47 N/A 31 Completed Projects MW/AC Queued Projects MW/AC Queued Projects MW/AC # of Projects Large Scale Solar PV MW/AC # of Projects MW/AC # of Projects	Wind	16	61	<1	9
Completed Projects Queued Projects MW/AC # of Projects MW/AC # of Projects Large Scale Solar PV Image: Scale Solar PV Image: Scale Solar PV Image: Scale Solar PV	Storage/Batteries ²	N/A	47	N/A	31
Completed Projects Queued Projects MW/AC # of Projects MW/AC # of Projects Large Scale Solar PV Image: Scale Solar PV Image: Scale Solar PV Image: Scale Solar PV					
MW/AC # of Projects MW/AC # of Projects Large Scale Solar PV		<u>Comple</u>	ted Projects	<u>Queue</u>	d Projects
Large Scale Solar PV		MW/AC	# of Projects	MW/AC	# of Projects
	Large Scale Solar PV				
Community Solar 656 268 241 226	Community Solar	656	268	241	226
Grid Scale 100 16 0 0	Grid Scale	100	16	0	0

(As of December 2019)

Preparer:	Jessica Peterson
Title:	Sr. Regulatory Analyst
Department:	Customer Solutions
Telephone:	612.330.6850
Date:	January 23, 2020

Revised: February 5, 2020

¹ No change since July 2019

² All current battery projects within our DER process are associated with other generation projects, such as solar. As such the application does not capture gen. MW as it is accounted for in other categories.

Xcel Energy		Information Request No.	20
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) page 257.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the Company's assumption of a 0.8% CAGR in NSP peak demand from 2019-2036.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

Please refer to FE-20 Attachment A for the calculation of the 0.8% CAGR in the NSP System peak demand forecast for the 2019-2036 period. The corporate load forecast used for the growth assumptions beyond the distribution planning period was developed in the Fall of 2019.

Preparer:	Luke Jaramillo
Title:	Senior Energy Forecasting
Department:	Sales, Energy and Demand
Telephone:	303-571-6239
Date:	January 23, 2020

NSP System Peak Demand Forecast, MW 2019 Fall forecast release

,	Peak Demand
	Forecast
2019	9,054
2020	9,058
2021	9,028
2022	9,066
2023	9,097
2024	9,108
2025	9,154
2026	9,219
2027	9,313
2028	9,396
2029	9,409
2030	9,480
2031	9,546
2032	9,634
2033	9,830
2034	10,033
2035	10,179
2036	10,330
2019-2036 CAGR	0.8%

□ Not Public Document – Not For Public Disclosure

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	21
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment D1.

Request:

- A. Please provide the name of the selected APT vendor and software platform.
- B. Please provide the names of existing APT customers that the Company interviewed.

Response:

- A. The vendor we selected for our Advanced Planning Tool is Willdan Group Inc.'s Integral Analytics. The software platform is LoadSEER.
- B. The Company met with Seattle City Light and Pacific Gas & Electric for customer references on the LoadSEER tool.

Preparer:	Brian Monson
Title:	Distribution Planning Engineer
Department:	System Planning and Strategy
Telephone:	763-493-1811
Date:	January 23, 2020

Xcel Energy		Information Request No.	22
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

<u>Reference:</u> Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment E.

Request:

Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact explaining the conversion factor and algorithm used by the Company to convert the reliability benefit to a financial value.

Response:

Northern States Power Company objects to this Request as overly broad and unduly burdensome. Subject to the foregoing objection, we respond as follows:

Attachment E to our 2019 IDP is our Risk Scoring Methodology that is part of our annual system planning process. We provide the requested information as Attachments A, B and C to this response, as follows:

Non-Public Attachment A – Risk Scoring_Electric. This document outlines the investment appraisal methodology and the reliability calculations used to capture an electric project's benefit.

Non-Public Attachment B – CMO-ICE_Calculator. This spreadsheet provides the calculation for the cost per Customer Minute Outage (CMO) used for the reliability benefit.

Non-Public Attachment C – IDP Projects_Score Breakdown. This spreadsheet is the listing of all scored projects, showing the reliability and financial benefits along with the annualized cost, all used for the benefit over cost ratio that becomes the project score. The reliability benefit is specifically broken down for two projects showing the

specific calculations used to determine the CMO's for overload and contingency risks mitigated by the project.

Attachment A to this response is a Company work product. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use, and/or contains proprietary customer and system data.

Please note Attachment A is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- **1. Nature of the Material:** The Investment Appraisal Methodology developed by the Company.
- 2. Authors: Risk Analytics
- **3.** Importance: The Company work product is proprietary to the Company.
- 4. Date the Information was Prepared: January 2019.

Attachment B contains information Xcel Energy maintains as Security Information, pursuant to Minn. Stat. § 13.37, subd. 1(a). The public disclosure or use of this information creates an unacceptable risk that those who want to disrupt our system for political or other reasons may learn which facilities to target to create a disruption of our service.

Attachment C also contains information Xcel Energy maintains as trade secret data as defined by Minn. Stat. § 13.37, subd. 1(b). This information has independent economic value from not being generally known to, and not being readily ascertainable by, other parties who could obtain economic value from its disclosure or use.

One tab included in Attachment C is marked as "Not-Public" in its entirety. Pursuant to Minn. Rule 7829.0500, subp. 3, the Company provides the following description of the excised material:

- 1. Nature of the Material: Calculations of the value of Customer Minutes Out
- 2. Authors: Risk Analytics
- **3.** Importance: The Company work product is proprietary to the Company.
- 4. Date the Information was Prepared: January 2019

Attachment C contains information Xcel Energy maintains as Security Information, pursuant to Minn. Stat. § 13.37, subd. 1(a). The public disclosure or use of this information creates an unacceptable risk that those who want to disrupt our system for political or other reasons may learn which facilities to target to create a disruption of our service.

Attachment C also contains information Xcel Energy maintains as trade secret data as defined by Minn. Stat. § 13.37, subd. 1(b). This information has independent economic value from not being generally known to, and not being readily ascertainable by, other parties who could obtain economic value from its disclosure or use.

One tab included in Attachment C is marked as "Not-Public" in its entirety. Pursuant to Minn. Rule 7829.0500, subp. 3, the Company provides the following description of the excised material:

- 5. Nature of the Material: Scored projects, showing the reliability and financial benefits along with the annualized cost
- 6. Authors: Electric Systems Performance and the Risk Analytics Department.
- 7. Importance: Key values to determine the potential reliability of certain projects.
- 8. Date the Information was Prepared: January 2020

Preparer:	Steve Rohlwing
Title:	Manager, Asset Risk Management
Department:	Risk Analytics
Telephone:	303-571-7392
Date:	January 23, 2020

PUBLIC DOCUMENT -NOT PUBLIC DATA HAS BEEN EXCISED

Mitigation No.	Mitigation Title	Jurisdiction	Lifespan of Project	Total Annualized Costs (\$M's)	Reliability Benefit - CMO (Electric)	Financial Benefit	Reliability Benefit	Financial Benefit	Total Weighted Benefit	Project Score
					[PROTECTED [DATA BEGINS	5			
E144.018970	Reinforce Medford Junction MDF TR1	NSPM - ED	40	\$0.158						114.9
E147.019893	Install Switch Coon Creek CNC073	NSPM - ED	40	\$0.002						52.9
E144.007793	Reinforce Fair Park FAP TR1 & Fdr	NSPM - ED	40	\$0.086						49.7
E143.016730	Install Feeder Tie Wilson WIL081	NSPM - ED	40	\$0.020						34.8
E147.017741	Reinforce Osseo OSS062	NSPM - ED	40	\$0.013						33.1
E150.018967	Extend Red Rock RRK063	NSPM - ED	40	\$0.007						18.1
E144.017637	Load Transfer ESW062 to SMT061	NSPM - ED	40	\$0.007						15.0
E141.017739	Extend Main Street MS1074	NSPM - ED	40	\$0.020						14.3
E143.016724	Reinforce Westgate WSG Feeders	NSPM - ED	40	\$0.036						10.8
E141.019911	Reinforce Medicine Lake MEL0/4	NSPM - ED	40	\$0.033						10.6
E141.019924	Install Hiawatha West HWW Feeder	NSPM - ED	40	\$0.079						10.3
E141.019929	Install Midtown MDT Feeder	NSPM - ED	40	\$0.125						9.5
E141.019957	Extend Saint Louis Park SLP085	NSPM - ED	40	\$0.010						8.4
E147.015637	Install Feeder Tie Usseo USS063	NSPM - ED	40	\$0.007						8.0
E150.019910	Load Transfer CGR062 to CGR071	NSPM - ED	40	\$0.063						7.7
E141.010910	Install Wilson WIL 1R4 & Feeders	NSPM - ED	40	\$0.970						7.6
E143.019055	Reinforce Savage SAV063 & SAV067	NSPM - ED	40	\$0.072						7.1
E150.010177	Install Stockwards STV TP2 & Ecodora	NSPM - ED	40	\$0.103						6.9
E 150.010914	Install Stockyalus STETRS & Feeders	NSPM - ED	40	\$0.263						6.3
E156.015749	Install Baytown BTT Feeders	NSPM - ED	40	\$0.268						6.2
E104.010772	Install Flesta City FIC Feedel	NSPM ED	40	\$0.066						6.0
E141.019930	Reinforce Spint Louis Dark SL D097	NSPN - ED	40	\$0.007						5.4
E141.019954	Extend Spint Louis Park SLP007	NSPN - ED	40	\$0.010						5.2
E 141.019920	Painfarco Glopwood GLD Sub Equip	NOPINI - ED	40	\$0.040						4.8
E134.010900	Install Goodview GV/W Ecodor	NOPINI - ED	40	\$0.046						4.0
E 144.002712 E 150.015662	Install Chemolite CHE065 Feeder	NSPN - ED	40	\$0.072						4.0
E 150.015002	Install Wyoming WYO Feeder	NSPN - ED	40	\$0.095						3.9
E1/3 016727	Install Feeder Tie FBI 064	NSPM - ED	40	\$0.105						3.9
E147.019056	Reinforce Basset Creek BCR062	NSPM - ED	40	\$0.010						3.7
E141.019058	Reinforce Moore Lake MOL 071	NSPM - ED	40	\$0.010						3.1
E151 012409	Install Western WES TR3 & Feeders	NSPM - ED	40	\$0.493						2.8
E101.012400	Reinforce Kasson KAN TR1 & Feeders	NSPM - ED	40	\$0.188						2.0
E147.012463	Install Feeder Tie Crooked Lake CRI 033	NSPM - ED	40	\$0.073						2.0
E154 010157	Install Albany ALB TR	NSPM - FD	40	\$0,194						2.0
E141.019956	Reinforce Terminal TER073	NSPM - ED	40	\$0.072						1.8
E150.012576	Install South Washington ERU Sub	NSPM - ED	40	\$0.361						1.9
E144.018971	Reinforce Veseli VES TR1 & Feeder	NSPM - ED	40	\$0.171						1.8
E141.019955	Extend Terminal TER064	NSPM - ED	40	\$0.010						1.7
E144.010920	Reinforce Burnside BUR TR2	NSPM - ED	40	\$0.172						1.6
E143.019054	Reinforce Edina EDA062	NSPM - ED	40	\$0.033						1.3
E147.014465	Reinforce Brooklyn Park BRP062	NSPM - ED	41	\$0.012						1.2
E144.000793	Install Zumbrota ZUM TR & Feeder	NSPM - ED	42	\$0.189						1.2
E144.016592	Reinforce Sibley Park SIP Sub Equip	NSPM - ED	43	\$0.006						1.1
E143.017702	Install Viking VKG Feeder	NSPM - ED	44	\$0.165						1.0
E150.010904	Install Rosemount RMT TR2 & Feeder	NSPM - ED	45	\$0.358						1.0
E142.011721	Install Orono ORO TR2 & Feeder	NSPM - ED	46	\$0.274						0.9
E156.007927	Install Goose Lake GLK TR3 & Feeders	NSPM - ED	47	\$0.333						0.8
E144.008708	Install Cannon Falls Trans CTF TR2 & Fdr	NSPM - ED	48	\$0.124						0.7
E147.013379	Install West Coon Rapids WCR TR	NSPM - ED	49	\$0.244						0.7
E156.011752	Install Lindstrom LIN Feeder	NSPM - ED	50	\$0.043						0.7
E143.019908	Install Hyland Lake HYL TR3 & Feeder	NSPM - ED	51	\$0.291						0.6
E156.011764	Reinforce Tanners Lake TLK Sub Equip	NSPM - ED	52	\$0.013						0.6
E156.015811	Reinforce Oakdale OAD073 & OAD075	NSPM - ED	53	\$0.018						0.5
E151.018961	New MPK075-GPH061 Feeder Tie	NSPM - ED	54	\$0.016						0.5
E144.013520	Install East Winona EWI TR2 & Feeder	NSPM - ED	55	\$0.218						0.4
E153.010999	Install Louise LOU TR2 & Feeders	NSPM - ED	56	\$0.332						0.4
E141.009146	Install Hiawatha West HWW TR2	NSPM - ED	57	\$0.092						0.1
E154.015728	Reinforce St Cloud SCL TR2	NSPM - ED	58	\$0.160						0.1
E141.009145	Install Midtown MDT TR2	NSPM - ED	59	\$0.093						0.1
								PROTECTED D	ATA ENDS]	

□ Not Public Document – Not For Public Disclosure

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	23
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

<u>Reference:</u> Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment G1.

<u>Request:</u>

Please provide a spreadsheet containing the data used by the Company to create Figures 1 and 2.

Response:

Attachment G1 is the Company's State of Minnesota Electric Jurisdiction capital profile trend for the 2014 to 2024 period, with Figures 1 and 2 portraying the IDP categories, as follows:

Figure 1

- New customer Projects and New Revenue
- Metering
- System Expansion or Upgrades for Capacity
- Grid Modernization and Pilot Projects

Figure 2

- Projects Related to Local (or other) Government Requirements
- Age-Related Replacements and Asset Renewal
- Other
- System Expansion or Upgrades for Reliability and Power Quality

We provide the requested information as Attachment A.

Preparer:	Shannon Robin
Title:	Manager, Investment Delivery
Department:	System Planning and Strategy North
Telephone:	651-229-2261
Date:	January 23, 2020

Docket No. E002/M-19-666 Fresh Energy IR No. 23 Attachment A Page 1 of 35

IDP Categories	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2014-2018	2019-2024
Age-Related Replacements and Asset Renewal	\$39.6	\$48.1	\$59.4	\$56.7	\$65.5	\$72.5	\$87.2	\$79.5	\$78.3	\$79.7	\$81.0	\$269.4	\$478.2
System Expansion or Upgrades for Capacity	\$33.3	\$21.3	\$23.3	\$16.4	\$15.1	\$19.5	\$44.4	\$40.1	\$32.3	\$32.9	\$37.9	\$109.4	\$207.1
Projects related to Local (or other) Government-Requirements	\$15.2	\$19.6	\$30.2	\$13.7	\$28.8	\$31.3	\$28.9	\$29.4	\$28.5	\$29.0	\$29.2	\$107.4	\$176.3
Metering	\$4.8	\$5.2	\$5.1	\$6.8	\$5.9	\$6.7	\$5.5	\$4.3	\$3.5	\$2.3	\$2.3	\$27.7	\$24.6
New Customer Projects and New Revenue	\$26.4	\$30.2	\$32.4	\$45.0	\$41.6	\$34.8	\$35.6	\$39.3	\$39.3	\$39.4	\$39.4	\$175.7	\$227.7
Non-Investment	(\$3.2)	(\$5.6)	\$4.7	\$4.7	(\$15.5)	(\$4.9)	(\$3.7)	(\$3.7)	(\$3.8)	(\$3.8)	(\$3.8)	(\$14.9)	(\$23.8)
Other (includes Fleet add in)	\$25.3	\$32.4	\$30.9	\$35.0	\$39.3	\$26.7	\$38.3	\$39.7	\$43.2	\$35.4	\$35.1	\$162.8	\$218.3
System Expansion or Upgrades for Reliability and Power Quality	\$14.4	\$15.6	\$20.2	\$22.8	\$24.4	\$19.8	\$21.5	\$114.7	\$117.4	\$117.3	\$117.3	\$97.4	\$508.0
Grid Modernization and Pilot Projects	\$0.0	\$0.0	\$0.0	\$0.0	\$0.4	\$4.6	\$19.9	\$49.3	\$141.7	\$152.4	\$76.7	\$0.4	\$444.6
	\$155.7	\$166.7	\$206.2	\$201.0	\$205.6	\$210.9	\$277.5	\$392.6	\$480.3	\$484.6	\$415.2	\$935.3	\$2,261.1

			2014
IDP Category	Mitigation Number	Mitigation Name	Expenditures
Age-Related Replacem	nents and Asset Renewal		
	E114.006616	MN Replace/Reinforce Non-Compliant Poles	5,602,656
	E114.005559	MN Major Storm Recovery BlanketMN	3,885,299
	E103.012612	ELR MN Sub TRs	2,404,986
	E103.014456	Replace 5 distribution dreakers at Merriam Park	2,291,856
	E103.004000	DOIIYUdie - Replace Falled OYKV/13.	2,022,002
	E103.011423 E141.012426	RCSIT Replacement Project - NSPW	1,094,012
	E141.013420 E154.011254	Laballe Pavility Project	1,793,070
	E134.011334 E141.001141		1,511,145
	E141.001141 F1/1 013910	Nipis-Off Rebuilds St. Anthony Falls Hydro 15kV Cable Penlacement	1,459,962
	F143 014668	WII 086 OH to LIG Conversion	1 346 695
	F151 016150	Hamline Station	981 499
	F151 013595	SSI: Convert St Clair 4kV to 13 8kV	957 944
	E151.012282	Reconductor RAM73 Mainline	918.667
	E103.014355	Rewind failed 115KV - 13.8KV 70MVA transformer	816,306
	E103.009150	SPCC NSPM Oil Spill Prevention	731,800
	E144.013060	M&R Dairv Rebuild	723,884
	E147.004711	Funding for CO109 Gravel Pit phase	713,162
	E154.012309	Remove Eden Valley to Watkins line	648,212
	E143.013748	SAV River Crossing	602,051
	E153.012431	Convert SOS 4kV to 13.8kV	596,249
	E141.013429	Hwy 7 and Louisiana OH to UG Relocate	570,794
	E142.009661	OH Rebuild Mtka increase	559,804
	E150.013542	Woodbury Drive Road Move 3000ft Feeder at Bailey	554,279
	E156.001292	White Bear-OH Rebuilds	502,240
	E143.014769	Savage, Replace failed TR2	486,449
	E147.001209	Maple Grv-OH Rebuilds	461,085
	E147.015160	Replace failed PKL TR3	435,543
	E142.004727	Co Rd 109, Phase 2-UG Conv	373,268
	E141.014168	OH to UG County Rd 9 - Xerxes to France	354,049
	E141.001664	ELR MPLS Vault Tops	286,484
	E154.013609	SSI: Add 3 phase line on east ALB22	251,464
	E156.008247	WBL Lap Cables	247,555
	E151.013631	Replace Network Protectors - STP	235,831
	E141.015088	Chicago Ave and 4th St Conversion	203,396
	E151.013039	ELR STP Vault Tops	202,398
	E150.014414	Replace Koch TRT6 with reserve	184,078
	E103.011091	ELR MIN SUD SWILLIES DM: Delegate OLL mainling for Liver 241 from Co. Dd 10 to Malvor Ava NE: St Michael MN: LAD211	109,130
	E147.002745 E1/1.010286	RM. Relocate On Indimine for hwy 241 norm co Ru 19 to wither Ave NE. St withder win. LAFSTT Replace Dustproof protectors	140,229
	F103 013521	FLR MN Sub RTUS	113 103
	F103.013804	Ungrade fence at Ruffalo Lake	96 361
	F154 011251	Sauk Ranids OH to LIG 2010	92 688
	F151 012985	SSI: Conv 4kV bitwn Holly and Ashland	87 841
	E150.003703	Woodbury Lakes OH to UG conversion	83,918
	E142.013678	Sparrow Rd. City of Minnetonka, OH to UG	80,975
	E154.014732	Sauk Rapids overhead to underground	59,495
	E154.008992	SSI: Osakis Conversion from 4kV to 12.5kV	30,363
	E103.012839	Tap Cable Injection	22,218
	E144.013597	Byron Frontage Road - OH to UG	16,804
	E103.012603	ELR MN Sub Regulators	15,955
	E141.012673	Replace Fifth Street FST Switchgear	3,066
	E144.015240	Replace Jordan Sub's Aging Equipment	957
	E103.013059	Purchase 50 MVA reserve transformer	820
	E154.013988	T: Annandale Town Rebuild	524
	E154.013611	SSI: Convert Echo 4kV to 23.9kV	407
	E103.013576	reserve 70 MVA 115/13.8 kV transformer	290
	E103.007227	NSPM Dist Line Parent for CRFS Tracker Work Orders	(74)
	NA	1997 PRIVATE PARTY FORCED RECO	(539)
	NA	2000 Electric Reconstruction -	(3,659)
	E143.014095	Shady Oak OH to UG Conversion	(79,230)
	E151.014770	Lillydaie UG Conversion	(226,982)
Suctom Expansion and	E142.014/22		(440,707)
system expansion or t		Oakland Install 13 8kV #1#2 FOMVA 8 fdrs	E 000 044
	F147.007514	Install Basset Creek BCRTR2 50MVA	2,070,044 1 913 663
	F150 010916	Convert Chemolite to 13.8kV	4,743,003 2 256 762
	F144 013396	Add 28MVA WASTR3 and 1 fdr	2,220,100
	F141 007874	Inst 13 8kV Hiawatha #1 50MVA	2,002,000
	F144 010890	Reinforce Lake Emily TR1 to 14MVA	1 598 876
	E154.012597	Upgrade Freeport substation to 12.5kV	1.290 644
	E144.013502	Reinforce 3 miles of SMT082	1.057.039
	E147.013543	Install BCR new feeder at Basset Creek	1.004.077
	E153.012465	Install tie for SOS062	949,596
	E141.002682	Replace Failed Network Protectors on FST Network	931,156

			2014
IDP Category	Mitigation Number	Mitigation Name	Expenditures
	E144.013934	Reinforce 3.5 miles of LAE061	857,469
	E141.017361	JAPS-ULSUN 7500 EXCEISIOF BIVO SSL. Osokis Conversion from 41/4 to 12 EkV	699,339
	E154.008992	SSI: USAKIS CONVERSION ITOM 4KV TO TZ.SKV Debuild Dublic Llochth Voult	004,290
	E131.011013 E144.012925	Rebuild Public Reality valit	047,003 100,271
	E144.012033	Velo Residental Ruilding - Vault	477,371
	E141.014031 E150.012453	Replace RRK TR1 with 50MVA and add one feeder	400,900
	E156 010172	Install new feeder at RAM	401 266
	E154.006387	New First Lake substation in Monticello. MN	298.659
	E151.011622	Rebuild Shaft Hole & Replace Cables	297.480
	E156.008860	Install switches on OAD075 and transfer load to relieve NOL	285,179
	E141.014356	Hampton Inn Ductline	242,525
	E141.014357	Hampton Inn Vault	235,289
	E151.010808	Install DBL082 feeder	234,634
	E141.014950	4 Marquette Ave - New Vault	222,233
	E143.001172	Edina-OH Reinforcements	197,716
	E151.002440	Extend MPK66 to US Bank east, ATO	168,936
	E141.015808	Cascade load relief to MDT	153,422
	E154.007052	Extend 3 phase to new development in Sartell - 50th st	145,532
	E147.001219	Maple Grv-UG Reinforcements	142,359
	E150.008740	Reconductor & Reinsulated CGR/1 to AFI322	129,763
	E151.011161	New Ductline on 5th btwn Broadway & Robert	128,483
	E141.011698	Indiana-IDAU64 new reinforce	117,796
	E141.014961	401 NICOIIET - NEW VAUIT	109,829
	E151.012435 E154.012502	Relificite DDL002	91,020
	E 154.012595 E1E0.014029	Relinit Hills Definent New 24 EkV Drimony Service off DMT211, to be haid by customer	01,400
	E156.007929	Install #2 at Long Lake normal load serving	63 230
	F156 012599	Install new fder tie for KOI 64	62 869
	E103.008083	Environmental Work NSPM-EI	61 873
	E142.011357	Convert Orono to 115 kV	59.892
	E143.010967	Vikina new sub 4 fdrs	56,667
	E114.015137	Aldrich - PT Addition - Parent already created	55,808
	E151.012987	SSI: Convert STR006	54,076
	E151.001248	St Paul-OH Reinforcements	52,595
	E150.012312	Replace PMC on CGR64 with PMH-9	47,181
	E147.011058	Plymouth-Area Power Grid Upgrades	43,478
	E150.010914	Install Stockyards STY TR3 & Feeders	39,373
	E144.001187	Southeast-UG Reinforcements	39,037
	E144.012984	SSI: Convert Waldorf Distribution	32,862
	E143.013500	Extend WSG062 to relieve WSG072	27,033
	E144.013448	SSI: Add 2nd 23.9kV Transformer and feeder at Waterville	26,356
	E141.013735	Nicollet Residence	25,678
	E142.014709	I: High side rebuild at BLC due to SWIC Charles Sub EDD(1. Deinforcement Dr.	22,649
	E142.004532	Chaska Sub FDR61 - Reinforcement Pr	21,790
	E147.012075 E141.014694	HOLUGT S PHASE UPUHAUE	19,740
	E142.009045	Install Bluff Crock 115/13 8kV 50MV/A TR#3-CANCELLED	15,001
	F141 014517	New FLP feeder	7 200
	F144 012973	Install Cap Bank at Crystal Foods	1 731
	E141.013130	Whole Foods - 222 Hennepin	1,567
	E144.010887	Install Dundas TR2 28MVA 69/13.8kV	1,304
	NA	Misc Tools and Equipment	1,061
	NA	Substation Land - ND	626
	NA	RESTORATION FOR ALL METR	409
	E141.013905	Construct ductline along Portland from MDT Sub to 27th	199
	E141.013010	New Feeder to UofM Fulton Switchstation	128
	E144.012111	Upgrade Buffalo Lake sub from 4kV to 15kV	31
	NA	Whole Foods - 222 Hennepin	19
	E103.013568	Rewind 69/12.5 kV 28 MVA	7
	E142.009048	Rebuild Chaska substation	(106)
	E156.010207	Install new HUG312 fdr at Hugo	(199)
	E142.011133	Transfer Plato load	(300)
	E141.010254	Install two Ald fdo	(1,993)
	NA 5154 001202	Install two Ald tos	(3,949)
	E 104.001282 E140.010100	NUTHINGSTOD REITION CETTERIN Bluff Creek rainf LV bushings on TP1 and TP2	(9,018)
	E142.013107 F143.007500	Install new feeder from Fast Bloomington Substation to the HHH Terminal @ MSD Airport	(10,919) (16,167)
	F147 010067	Install Flm Creek TR#3 (115/13.8k//)	(10,107) (AE 200)
	F143 013101	Inited Health Shady Oak Road Project	(40,209) (kq 794)
	F103 012000	Canitalized-MN-Sales Tax Rfd - Fler	(00,200) (572 872)
Projects related to L	cal (or other) Government-	Requirements	(372,072)
	E141.013815	Centerpoint 2nd St N Relocation	1.903.144
	E151.015043	Snelling Bridge Relocation	1,292.236
	E156.013070	St Croix River Bridge	1,259,015
	E150.014165	Hwy 149 & 55 Road Move Eagan Relocate 6 feeders	1,231,203
	E156.014239	RAM071 - Cty Rd B Road Work Maplewood	872,471

			2014
IDP Category	Mitigation Number	Mitigation Name	Expenditures
	E144.012864	County Road 20 Road Move	752,438
	E143.014406	Shady Oak Conversion 212 Crossing	/03,151
	E154.007065	Hwy IUI and County Rd 36 Overnead Relocation	605,602
	E141.015206	SL ANINONY Bridge Relocation	5/5,//6
	E103.011300 E144.012690	Drochach L 00 Do Douto 2 Mi OH	401,344
	E144.013060 E142.008544	County Pd 17 Delano, Poad Move	433,975
	E142.000344	County Rd 17, Delaho, Road Move	415,801
	F143 005672	EDP/ANDERSON LAKES & HWY 169/RELOCA	375 768
	F151 016971	White Bear Ave Relocation	356 980
	F144 001189	Southeast-LIG Relocations	344 628
	E154.014057	Rogers Hwy 101 Relocation	337.144
	E143.013003	Hwy 5 and Hwy 13 Relocations	298.305
	E147.004557	Medina-Hwy 101 Overhead Fdr-RM	295.633
	E143.000159	Road Widening Minnetonka CR5 and CR73	244,673
	E141.002215	Mpls-UG Service Conv	195,634
	E142.011113	Required distribution move due to phase I SWTC transmission rebuild	172,780
	E150.009111	Relc TLK77 OH on Century for Cty Rd Widening	168,727
	E151.001251	St Paul-UG Relocations	166,901
	E147.001221	Maple Grv-UG Relocations	154,367
	E141.016028	5601 Lake St PMH Relocation	144,937
	E142.001160	Mntka-UG Relocations	139,404
	E143.002217	Edina-UG Service Conv	132,003
	E151.002224	St Paul-UG Service Conv	121,229
	E151.012334	35E Relocation	114,317
	E150.013029	Cedar Grove PKWY Relocate 5000ft of 750AL	100,581
	E156.002218	White Bear-UG Service Conv	93,480
	E154.001284	Northwest-UG Relocations	91,470
	E143.010876	Hwy 494/169 Interchange rebuild	83,368
	E143.013104	MOA Relocation	78,375
	E142.002216	Mitthe Beer HO Beleveling	65,760
	E156.001296	White Bear-UG Relocations	59,749
	E151.014237	Salins Balipark UR-UG DBLU03	40,017
	E 150.002222 E147.002210	Maple Cry LIC Service Conv	31,381
	E147.002219 E154.002220	Northwest LIC Service Conv	20,430
	E134.002220	Southoast LIC Sorvice Conv	24,075
	E144.002223	Arsonal removal and relocation of facilities AHI024	23,401
	F144 014340	Morton County Road 2 Relocation	151
	F144 013661	West Concord CSAH 24 3-mile road grade	(818)
	F150 013782	Hastings Hwy 61 Bridge Replacement	(1 141)
	NA	Lrt - Dist Work	(4,771)
	E151.007769	Relocate for LRT in St Paul	(5,597)
	E141.013428	Relocate Ductline for New Viking Stadium	(16,664)
	E150.011418	Hastings Bridge Re-route ductbank for pier #5 Hwy 61	(46,947)
	E151.008736	RM- Relocate Feeders Rice St	(151,286)
Metering			
	E103.001040	MN-Electric Meter Blanket	4,770,055
New Customer Project	cts and New Revenue	Neument UC Eutenning	2.017.400
	E 150.005996 E147.014741	Newport-UG Extensions	2,917,400
	E147.014741 E141.017262	265 Nicellat Construction Dowor	1,762,014
	E141.017302 E144.003805	Wanamingo Dine Didge development 82 units	1,800,914
	F156 001299	White Bear-IIG Extensions	1,742,477
	F143 002572	Install Feeder tie to eliminate N-1 on WII 86 4 9 MVA	1 333 016
	E156.001288	White Bear-UG Services	1,241 904
	E150 001226	Newport-UG Services	1 120 037
	E142.010321	New Germany Trophy Lake 45 lot URD	965.900
	E154.001271	Northwest-UG Extensions	896.149
	E142.001152	Mntka-New UG Services	718,541
	E144.001179	Southeast-UG Services	694,270
	E154.001277	Northwest-New UG Services	688,333
	E142.014619	Woodland Cove JT Devlopment, Minnetrista, MN	682,566
	E151.015041	Port Authority Barge Road	612,764
	E147.001214	Maple Grv-New Elec UG Services	605,802
	E143.001169	Edina-New UG Street Lights	513,642
	E141.017364	1910 Queen Ave N Extension	481,446
	E156.001286	White Bear-OH Extension	469,811
	E141.001135	Mpls-OH Services	465,044
	E144.002761	Switch load to new Summit Ave Bank #2 Feeder	419,758
	E143.001167	Edina-UG Services	382,522
	E141.010560	Serve Children's Hosiptal Addition (ATO and Pri Svc)	373,181
	E150.001229	Newport-UG Streetlights	308,194
	E154.011195	Paynesville Mastermark Plastic NB Convert to 35kV	262,554
	E144.001181	Southeast-OH Streetlights	262,291
	E144.001182	Southeast-UG Streetlights	258,214
	E141.001138	wpis-wew OH Street Lights	251,827

			2014
IDP Category	Mitigation Number	Mitigation Name	Expenditures
	E156.001290	White Bear-UG Street Lts	249,983
	E142.014720	Wayzata Bay Development	182,952
	E147.014733	Oxbow Cove Development	168,216
	E156.001555	Upgrade feeder exit with 1000 AI and reactor	158,590
	E144.001178	Southeast-OH Services	152,366
	E151.001240	St Paul-OH Services	137,536
	E154.001274	Northwest-New OH Street Lights	135,961
	E156.001287	White Bear-OH Services	122,417
	E151.001243	St Paul-OH Streetlights	110,857
	E141.001139	Mpls-New UG Street Lights	109.071
	E150.014745	Dakota Aggregate-RMT312 Extend OH 5500ft	105.549
	E147.001215	Maple Grv-New UG Street Lights	104,971
	F154 001276	Northwest-New OH Services	97 268
	F142 001150	Mntka-OH Extension	93 754
	E142.001166	Edina-New OH Services	92 070
	F147 014055	Highgrove 3rd Addition	91 770
	E147.014033	Newport-OH Services	70,817
	E150.001225	Northwest New LIC Street Lights	76 207
	E134.001278	Install a new tie to DKLOE to aliminate N 1 on MELAE	70,277
	E141.000640	Install a flew the to PKLos to eliminate N-1 of MELos	71,015
	E143.002373	Ch Devid UC Complete	57,974
	E151.001241	St Paul-OG Services	47,109
	E156.001289	White Bear-OH Street Lights	46,908
	E150.001228	Newport-OH Streetlights	44,600
	E142.001151	Mntka-OH Services	42,388
	E143.001168	Edina-New OH Street Lights	41,811
	E147.001213	Maple Grv-OH Services	29,739
	E147.001211	Maple Grv-New OH Street Lights	28,924
	E142.001153	Mntka-New OH Street Lights	24,836
	NA	North Dakota/MN - UG Extension	12,486
	E151.001244	St Paul-UG Street Lights	2,530
	NA	1999 ELECTRIC NEW BUSINESS - N	(1,232)
	E141.003614	Street Lighting, Poles, Luminair	(1,714)
	NA	2-NEW SOU FDRS-DIST WORK	(10,491)
	NA	2000 Electric New Business - S	(10,719)
	E142.001154	Mntka-New UG Street Lights	(20,292)
	E143.013750	MAC Dual Source HHH Term	(30,124)
	E143.013752	MAC NE Vault	(111,904)
	E141.015202	500 and 600 4th St S Extension to Wells Fargo	(282,093)
Non-Investment		· · · · · · · · · · · · · · · · · · ·	
	E114.010645	Clearing WO for CRS credits	270,630
	NA	Misc Non-Investment	48,244
	E143.001170	Electric New Construction Contributions in Aid	(76,588)
	E154.001279	Electric New Construction Contributions in Aid	(131,627)
	E151.001245	Electric New Construction Contributions in Aid	(188,939)
	E144.001183	Electric New Construction Contributions in Aid	(233,800)
	E142.001155	Electric New Construction Contributions in Aid	(246.271)
	E156.001291	Electric New Construction Contributions in Aid	(352,141)
	E147.001216	Electric New Construction Contributions in Aid	(367.591)
	F150 001230	Electric New Construction Contributions in Aid	(480,775)
	F141 001140	Electric New Construction Contributions in Aid	(1 486 094)
Other	21111001110		(1,100,071)
	E103.001041	MN-New Bus Transformer	20,505,396
	NA	Eleet Purchases	4,285,240
	F103 010660	VAR System Project	773 836
	E103.011405	Install feeder load monitoring at selected subs	472.543
	F103 001738	MN Subs tools & equip	398 535
	E103 002265	Capitalized Locating Costs-Elec LIG MN	337 870
	E103.010365	NSPM General Equipment - Communications	200 216
	E103.010303	Mals Electric Tools & Equip	150 289
	E141.001133	Intelliteam SG Pollout	137,300
	E103 002100	2002 Spec Costr Sm Tool/Equipment Blanket for NSDM	140,712
	E103.002100	Pomoto Fault Indication and Load Monitors	133,040
	C102.002112	Toole & Equipment Transportation Blanket	117,417
	E103.002113	MN Subs Constrations	117,139
	E103.001/39 E154.001070	Northwort Floc Tools/Fauin	115,200
	E 134.001273	Miss Tools and Equipment	84,198
	INA C102 01222/	Ivise roots and Equipment Lesster	19,214
	C1U3.U13336	rous and Equipment - Locating	/0,795
	E144.001190	Soumeast-Elec Tools & Equip	66,505
	CT15.006786	Logistics-INSPIN Loois Blanket	65,633
	E151.001252	St Paul-Elec Lools & Equip	63,878
	E153.001257	SD-Tools & Equip	53,803
	E147.001210	Maple Grv-Electric Tools & Equip	49,405
	E103.002099	NSPM Metering Sys-Tools & Equipment Blanket	34,898
	E145.001206	ND-Electric Tools & Equip	34,209
	E141.003695	Univ of MN Lease for Ductline/Reimbursement	28,848
	E143.001164	Edina-Elect Tool/Equip	26,222
	E150.001223	Newport-Elec Tool/Equip	25,418

			2014
IDP Category	Mitigation Number	Mitigation Name	Expenditures
	E156.001297	White Bear-Electric Tools & Eq	25,203
	E103.013567	Install feeder load monitoring at selected subs	18,442
	E103.011254	Substation Asset Sales for NSM	18,000
	E103.001040	MN-Electric Meter Blanket	13,697
	E103.013585	Substation new RTU and FLM	12,237
	E103.012825	Electric Franchise Renewal	12,211
	E142.001149	Mntka-Elec Tools/Equip	9,297
	NA	Misc Non-Investment	7,076
	E103.012099	Capitalized-MN-Sales Tax Rfd - Elec	(3,390,290)
System Expansion or Up	grades for Reliability and	I Power Quality	
	E103.003453	Tap Cable Replacement 2nd Tier Minnesota	11,644,908
	E103.003452	Mainline Cable Replacement - Reactive - NSPM	1,406,697
	E114.007693	Reliability Monitoring System (REMS): MN	514,700
	E114.013511	Install Automated Switches to Improve Performance - MN	400,239
	E103.001044	NSPM-Poor Performing Fdr Blanket	236,476
	E103.009970	Mainline Cable Replacement - Proactive 2nd Tier - NSPM	106,728
	E142.012191	Reliability Upgrades (REMS) to BLC063 feeder	95,176
Grand Total			155,747,681

Mitigation		2015
IDP Category Number	Mitigation Name	Expenditures
Age-Related Replacements and Ass	et Renewal	
E114.006616	MN Replace/Reinforce Non-Compliant Poles	8,301,322
E114.005559 E102.004666	Win Wajor Storm Recovery Blankelium	0,572,810
E 103.004888 E147.004711	Funding for CO109 Gravel Pit phase	2 470 468
E103.014456	Replace 5 distribution breakers at Merriam Park	2,227.623
E141.013910	St. Anthony Falls Hydro 15kV Cable Replacement	1,984,266
E154.011354	Install Cottonwood stepdowns to enable retirement of sub	1,493,469
E141.001141	MpIs-OH Rebuilds	1,474,723
E151.012282	Reconductor RAM73 Mainline	1,449,388
E103.013576	reserve 70 MVA 115/13.8 kV transformer	1,320,329
E103.012612	ELR MN Sub TRS	1,104,591
E 153.012431 E102.014255	CUIVER SUS 4KV RU 13.8KV Dowind failed 115KV 12.9KV 70MV/A transformer	1,091,303
E103.014333	OH Rehuild Mtka increase	980 025
E151.013631	Replace Network Protectors - STP	867.073
E143.014668	WIL086 OH to UG Conversion	826,619
E103.011423	RCSII Replacement Project - NSPM	820,598
E151.013595	SSI: Convert St Clair 4kV to 13.8kV	739,079
E147.001209	Maple Grv-OH Rebuilds	703,410
E154.012309	Remove Eden Valley to Watkins line	701,990
E151.016150	Hamline Station	694,531
E 103.009150 E1E0.002702	SPCC NSPM OII Spill Prevention	687,821
E100.003703 E103.015161	Purchase 50 MVA reserve transformer	640 558
E105.013101 E156.001292	White Bear-OH Rebuilds	576,102
E154.015412	Franklin TR4 Replacement	563,179
E143.013748	SAV River Crossing	541,815
E144.013060	M&R Dairy Rebuild	534,740
E103.012603	ELR MN Sub Regulators	489,492
E150.013542	Woodbury Drive Road Move 3000ft Feeder at Bailey	472,377
E154.013608	SSI: Convert Spicer area from 12.5kV to 34.5kV	427,741
E141.015959 E103.01E30E	Apache TR TEmergency Replacement	364,389
E103.015305 E142.004727	Co. Rd 109. Phase 2-LIG Conv	278 938
F141 001664	ELR MPLS Vault Tops	225,286
E147.002745	RM: Relocate OH mainline for Hwy 241 from Co Rd 19 to McIver Ave NE: St Michael MN: LAP311	222,067
E103.013521	ELR MN Sub RTUs	216,983
E103.011891	ELR MN Sub Switches	215,798
E144.015240	Replace Jordan Sub's Aging Equipment	182,303
E103.013804	Upgrade fence at Buffalo Lake	178,524
E151.013639	ELR STP Vault Tops	137,659
E141.015353	Replace Failed WRR TR3	135,415
E 141.010288 E156.008247	WRL Tan Cables	121,122
F151 016446	Jackson St Rebuild	65,459
E145.019635	ND Substation Fence Improvement	62,129
E103.013059	Purchase 50 MVA reserve transformer	56,742
E147.015160	Replace failed PKL TR3	25,440
E143.014769	Savage, Replace failed TR2	24,607
E141.012673	Replace Fifth Street FST Switchgear	21,174
E103.016067	New 70 MVA reserve TR 115/13.8 kV	2,854
E103.007227	NSPM Dist Line Parent for CRFS Tracker Work Orders	/4
E 150.014414 E102.012820	Tap Cable Injection	03
F151 012039	SSI: Conv 4kV btwn Holly and Ashland	(415)
NA	Re route main St Ductline to v	(1.901)
E154.014732	Sauk Rapids overhead to underground	(40,973)
E154.016227	Freeport to Black Oak Rebuild	(339,524)
System Expansion or Upgrades for 0	Capacity	
E154.006387	New First Lake substation in Monticello, MN	6,469,203
E154.002521	Install second Dank at Flesta Lity	1,866,061
E156.0101/2 E144.01244E	Add 50MVA Fastwood TP3 and feeders	1,805,055 1 202 204
E 144.013445 F153 012465	Install tie for SOS062	967 668
E141.002682	Replace Failed Network Protectors on FST Network	739.305
E142.013447	Install TR at new Hazeltine sub	674,232
E141.016066	Minnehaha Ductline Extension	669,824

	Mitigation		2015
IDP Category	Number	Mitigation Name	Expenditures
	E151.012407	Transfer Load from DBL067	637,184
	E144.013438	Reinforce Sibley Park Feeder Exits	480,251
	E141.011698	Indiana-IDA064 new reinforce	402,799
	E141.013905	Construct ductline along Portland from MDT Sub to 27th	395,967
	E147.002788 E151.011161	New Ductline on 5th htwn Broadway & Pohert	393,782 306,817
	F141 014517	New El P feeder	303,967
	E147.013543	Install BCR new feeder at Basset Creek	303,492
	E141.007874	Inst 13.8kV Hiawatha #1 50MVA	294,764
	E154.014561	Remove and Retire Empire Park substation	263,581
	E150.008740	Reconductor & Reinsulated CGR71 to AFT322	240,698
	E141.017361	JAPS-OLSON 7500 Excelsior Blvd	231,506
	E151.011613	Rebuild Public Health Vault	229,562
	E154.015394	Install new feeder MNI073	229,085
	E141.014950	4 Marquette Ave - New Vault	222,041
	E150.010906 E141.014061	401 Nicollot Now Vault	203,379
	E141.014901 E150.010916	Convert Chemolite to 13 8kV	202,145
	E150.010710 E151.002440	Extend MPK66 to US Bank east. ATO	190,062
	E156.008860	Install switches on OAD075 and transfer load to relieve NOL	189,108
	E103.008083	Environmental Work NSPM-EL	158,782
	E151.001248	St Paul-OH Reinforcements	124,843
	E154.012597	Upgrade Freeport substation to 12.5kV	119,453
	E103.014467	Sub Fiber Communication Cutover	111,858
	E142.014709	T: High side rebuild at BLC due to SWTC	104,672
	E150.012453	Replace RRK TR1 with 50MVA and add one feeder	95,568
	E154.007052	Extend 3 phase to new development in Sartell - 50th st	82,910
	E144.012835 E144.001197	Reconductor 2 mi SCH211 Teeder.	//,533
	E144.001187 E156.012599	Install new fder tie for KOI 64	67 104
	E130.012377	Install Bluff Creek 115/13 8kV 50MVA TR#3-CANCELLED	47,939
	E150.012312	Replace PMC on CGR64 with PMH-9	33,485
	E143.001172	Edina-OH Reinforcements	33,229
	E143.010967	Viking new sub 4 fdrs	30,995
	E141.015808	Cascade load relief to MDT	24,483
	E141.016015	Add LTC Control at 5th St. Sub	22,921
	E147.012675	HOL061 3 Phase Upgrade	22,601
	E141.014356	Hampton Inn Ductline	21,481
	E142.004532	Chaska Sub FDR61 - Reinforcement Pr	19,018
	E147.011038 E143.013101	Linited Health Shady Oak Road Project	12,014
	E147.001219	Maple Grv-UG Reinforcements	10.936
	E154.001282	Northwest-UG Reinforcement	10,562
	E144.012984	SSI: Convert Waldorf Distribution	10,452
	E143.013500	Extend WSG062 to relieve WSG072	5,733
	E141.016335	Block 69 Residential Vault Ryan Co	5,249
	E141.014357	Hampton Inn Vault	3,467
	E151.010808	Install DBL082 feeder	2,973
	E144.012111	Upgrade Buffalo Lake sub from 4kV to 15kV	2,956
	E156.002804	Add 2nd bank at Baytown to eliminate N-1 risk	1,852
	E154.008992	SSI: USAKIS CUTVEISIULI TUTTI 4KV TU 12.3KV Deinforce SDV TP1	1,492
	E134.012393 E147.010067	Install Flm Creek TR#3 (115/13 8kV)	676
	F144 010890	Reinforce Lake Emily TR1 to 14MVA	451
	E144.013934	Reinforce 3.5 miles of LAE061	387
	E142.011357	Convert Orono to 115 kV	82
	E103.013568	Rewind 69/12.5 kV 28 MVA	(7)
	E151.011622	Rebuild Shaft Hole & Replace Cables	(19)
	NA	Substation Land - ND	(626)
	E144.012973	Install Cap Bank at Crystal Foods	(1,831)
	E141.014051	Veio Residental Building - Vault	(5,772)
	E144.013502	Reinforce 3 Miles of SMT082	(13,845)
	E141.013/35 F144 012440	Nicolie: Residence SSI: Add 2nd 23 9kV Transformer and feeder at Waterville	(10,303) (26,254)
	E144.013448 F141 014694	U of M CHP Express Feeders	(20,300) (28,570)
	E150.010914	Install Stockvards STY TR3 & Feeders	(39,373)
	E141.010254	Marshall-RIV062 Convert4kV	(48.671)
	E144.013396	Add 28MVA WASTR3 and 1 fdr	(75,171)
	E141.007514	Oakland Install 13.8kV #1#2 50MVA 8 fdrs	(239,806)
	Mitigation		2015
-----------------------	-----------------------------	--	------------------------
IDP Category	Number	Mitigation Name	Expenditures
	E103.012099	Capitalized-MN-Sales Tax Rfd - Elec	(438,115)
Projects related to L	Local (or other) (Government-Requirements	1 241 157
	E142.013864 F142.014709	T: Rebuild head end of WSG362 due to SWTC T-line project	1,341,157 1,078,380
	E156.014239	RAM071 - Ctv Rd B Road Work Maplewood	1,078,380
	E142.014722	County Road 101 OH-UG	1,001,648
	E144.012864	County Road 20 Road Move	812,776
	E141.015303	SLP Reroute	805,775
	E141.013426	LaSalle Paving Project	789,928
	E147.014690	Hwy 610 Extension	740,829
	E144.014340 E142.005672		602,720 540,797
	F150 009111	Rela TLK77 OH on Century for Cty Rd Widening	562 063
	E147.015783	Vicksburg OH-UG	546.743
	E141.015300	4th St S Ductline Relocation	530,874
	E150.015957	Robert Street Relocation W St Paul	521,201
	E154.007065	Hwy 101 and County Rd 36 Overhead Relocation	507,148
	E141.016028	5601 Lake St PMH Relocation	507,021
	E144.014112	Madison Ave Manholes Mankato	495,114
	E141.015206 E151.015042	SL. ANIMONY BRIdge Relocation	476,712
	E151.015043 E151.001251	St Paul-LIG Relocations	410,900
	E142.008544	County Rd 17. Delano. Road Move	403,461
	E142.015919	OH-UG Minnetonka Hwy 101 and Excelsion	382,116
	E144.015769	Winona Hwy 43 Bridge Ductline Re-route	370,457
	E143.014095	Shady Oak OH to UG Conversion	366,347
	E143.015886	City of Richfield OH-UG	306,658
	E103.011368	NSPM facility transfers from 3rd Party Owned Poles	304,266
	E156.014240 E141.014160	OH-UG Coty 9 - France to Hwy 81	290,310
	F156 015411	HUG311/312 Centerville Road Centerville	273,077
	E144.015314	CAPX 2020 OH-UG in Zumbrota	268,186
	E141.002215	Mpls-UG Service Conv	257,366
	E143.000159	Road Widening Minnetonka CR5 and CR73	253,482
	E142.001160	Mntka-UG Relocations	248,486
	E144.015253	Mankato Downtown Civic Center Project	241,831
	E151.014770	Lillydale UG Conversion	238,297
	E141.015301 E147.004557	Medina-Hwy 101 Overhead Edr-PM	233,192
	F151 002224	St Paul-IIG Service Conv	183,965
	E144.013680	Dresbach I-90 Re-Route 3 Mi OH	166,550
	E143.002217	Edina-UG Service Conv	156,670
	E142.002216	Mntka-UG Service Conv	147,399
	E141.013428	Relocate Ductline for New Viking Stadium	122,382
	E150.011418	Hastings Bridge Re-route ductbank for pier #5 Hwy 61	115,939
	E154.013988	I: Annandale Iown Rebuild	113,577
	E156.015407 E156.002218	White Bear-IIG Service Conv	03,575
	E144.001189	Southeast-UG Relocations	95.094
	E154.001284	Northwest-UG Relocations	63,825
	E144.002223	Southeast-UG Service Conv	58,992
	E147.002219	Maple Grv-UG Service Conv	51,277
	E154.002220	Northwest-UG Service Conv	33,727
	E150.002222	Newport-UG Service Conv	27,200
	E147.001221	Maple Grv-UG Relocations	25,550
	E150.001290 E143.014406	While Bedi-UG Relocations Shady Oak Conversion 212 Crossing	25,080
	F141 015088	Chicago Ave and 4th St Conversion	7,727
	E156.013070	St Croix River Bridge	4,120
	E141.016274	Nicollet Mall Street Scape	2,376
	E151.014237	Saints Ballpark OH-UG DBL063	560
	E156.014013	Arsenal removal and relocation of facilities. AHI024	537
	E150.014165	Hwy 149 & 55 Road Move Eagan Relocate 6 feeders	444
	E154.014754	County Ka 3 Sauk Kapids	3
	E 100.013029 F141 013915	Centerpoint 2nd St N Relocation	U (AO 512)
	E141.014168	OH to UG County Rd 9 - Xerxes to France	(40,515) (134 544)
	E151.012334	35E Relocation	(245,531)
	E151.016971	White Bear Ave Relocation	(260,654)

IDP Category	Mitigation Number	Mitigation Name	2015 Expenditures
Metering	F103 001040	MN-Electric Meter Blanket	5 162 884
New Customer Pro	ojects and New Re	evenue	5,102,004
	E141.015298	900 5th St S FST087 - FST077 Extension	2,337,740
	E156.001299	White Bear-UG Extensions	2,292,064
	E150.005996	Newport-UG Extensions	2,002,824
	E141.01/362	365 Nicoliet Construction Power	1,913,269
	E147.014741 E141.015202	500 and 600 4th St S Extension to Wells Fargo	1,793,734
	E156.001288	White Bear-UG Services	1,370,480
	E144.003805	Wanamingo - Pine Ridge development 82 units	1,283,957
	E143.002572	Install Feeder tie to eliminate N-1 on WIL86 4.9 MVA	1,168,601
	E142.010321	New Germany Trophy Lake 45 lot URD	1,015,284
	E141.015296	700 4th St S Extension MSFA	849,592
	E141.016332	Block 75 Residential Vault Project	825,259
	E 150.001226	Newport-UG Services	805,380
	E144.002701 E154.001271	Northwest IIG Extensions	730,846
	E142.001152	Motka-New UG Services	702.096
	E144.001179	Southeast-UG Services	670,001
	E143.001169	Edina-New UG Street Lights	610,582
	E154.001277	Northwest-New UG Services	574,040
	E147.001214	Maple Grv-New Elec UG Services	548,460
	E141.001135	Mpls-OH Services	449,571
	E141.010560	Serve Children's Hosiptal Addition (ATO and Pri Svc)	381,557
	E151.015041	Port Authority Barge Road	336,350
	E151.001240 E154.011195	St Paul-OH Set Vices Pavnesville Mastermark Plastic NR Convert to 35kV	323,994 311 124
	E142.014720	Wayzata Bay Development	305.977
	E156.001286	White Bear-OH Extension	288,901
	E141.017364	1910 Queen Ave N Extension	287,906
	E143.001167	Edina-UG Services	287,302
	E144.001181	Southeast-OH Streetlights	276,113
	E141.001138	Mpls-New OH Street Lights	250,431
	E141.015299	900 5th St S ELP064 - ELP071 Extension	246,941
	E142.014619	Southoast OH Sonvicos	230,940
	F151 015233	The Vintage	203,743
	E150.014745	Dakota Aggregate-RMT312 Extend OH 5500ft	166,097
	E154.001278	Northwest-New UG Street Lights	160,733
	E142.001150	Mntka-OH Extension	156,443
	E156.001555	Upgrade feeder exit with 1000 Al and reactor	149,675
	E154.001276	Northwest-New OH Services	127,673
	E154.001274	Northwest-New OH Street Lights	123,664
	E156.001287	White Bear-OH Services	120,186
	E151.001243 E1/1 001130	SL Paul-OH SILEEUIGHIS Mals-New LIG Street Lights	107,088 05.01 <i>1</i>
	E147.001215	Maple Grv-New UG Street Lights	95,840
	E143.001166	Edina-New OH Services	94,364
	E143.001168	Edina-New OH Street Lights	81,097
	E142.001154	Mntka-New UG Street Lights	67,734
	E144.001182	Southeast-UG Streetlights	64,790
	E151.001241	St Paul-UG Services	62,778
	E156.001289	White Bear-OH Street Lights	50,633
	E142.001151	Mntka-OH Services	48,480
	E143.002573	Install switches to eliminate N-1 on WIL/7 4 MVA	47,582
	F150 001211	Newport-OH Streetlights	44,052 13 785
	E156.001290	White Bear-UG Street Lts	30,519
	E147.001213	Maple Grv-OH Services	29,723
	E150.001225	Newport-OH Services	28,646
	E142.001153	Mntka-New OH Street Lights	24,841
	E141.000640	Install a new tie to PKL85 to eliminate N-1 on MEL65	12,166
	E143.013752	MAC NE Vault	6,502
	E151.001244	St Paul-UG Street Lights	7
	INA E150.001220	Newnort-IIG Streetlights	(13) (51 220)
Non-Investment	L130.001229	nowport of Streetinging	(31,339)

IDD Catagory	Mitigation	Mitigation Nama	2015 Expenditures
IDF Category	F103 016168	Aurora Solar Sub Comm	5 535
	F154 016124	Aurora Solar Project NW	4 943
	E144.016140	Aurora Solar Project SE	295
	E156.016141	Aurora Solar Project WBL	245
	E144.015449	Southeast Solar Garden Extensions	(2,675)
	NA	Misc Non-Investment	(182,077)
	E151.001245	Electric New Construction Contributions in Aid	(184,861)
	E154.001279	Electric New Construction Contributions in Aid	(215,120)
	E144.001183	Electric New Construction Contributions in Aid	(222,435)
	E142.001155	Electric New Construction Contributions in Aid	(232,004)
	E147.001216	Electric New Construction Contributions in Aid	(342,609)
	E156.001291	Electric New Construction Contributions in Aid	(386,011)
	E143.001170	Electric New Construction Contributions in Aid	(523,179)
	E150.001230	Electric New Construction Contributions in Aid	(590,303)
	E114.010645	Clearing WO for CRS credits	(754,145)
	E141.001140	Electric New Construction Contributions in Aid	(2,062,292)
Other	F102 001041	MAN New Due Teense	10.0/4.003
	E 103.001041	MN-New Bus Transformer	19,064,093
	NA E102.01024E	Field Full Mases	8,010,813
	E103.010303	VAD System Project	1,052,210
	E103.010000	Mals Electric Tools & Equin	040;390 667 744
	E141.001133	Ponlace Frame Pelays in NSDM	462 460
	F103.014404	MN Subs tools & equin	343 553
	F103.001730	NSPM Metering Sys-Tools & Equipment Blanket	343,333
	E103.002265	Capitalized Locating Costs-Elec UG MN	320 145
	E103.014467	Sub Fiber Communication Cutover	286.564
	C103.002113	Tools & Equipment-Transportation Blanket	280.087
	E103.011405	Install feeder load monitoring at selected subs	250,892
	NA	Misc Tools and Equipment	209,449
	E103.002100	2002 Spec Cnstr - Sm Tool/Equipment Blanket for NSPM	141,428
	NA	NSM Vegetation Mgmt MDT	132,993
	E154.001273	Northwest-Elec Tools/Equip	122,159
	E103.001739	MN Subs Constr tools	111,531
	E151.001252	St Paul-Elec Tools & Equip	106,624
	E144.001190	Southeast-Elec Tools & Equip	82,737
	E141.003695	Univ of MN Lease for Ductline/Reimbursement	79,089
	C115.006786	Logistics-NSPM Tools Blanket	78,840
	E114.006438	Intelliteam SG Rollout	72,562
	E142.001149	Mntka-Elec Tools/Equip	53,935
	C103.013336	Tools and Equipment - Locating	53,130
	E147.001210	Maple Grv-Electric Tools & Equip	51,540
	E156.001297	White Bear-Electric Lools & Eq	51,253
	E103.013567	Install feeder load monitoring at selected subs	47,766
	E143.001164	Edina-Elect Tool/Equip	45,950
	E145.001206	ND-Electric Tools & Equip	45,521
	E153.011934	LOGISTICS-INSPIN TOOIS BIANKEL - SD	39,513
	E140.013434	ND-DISt Sub Communication Equipment Substation new DTU and ELM	39,329
	E103.013363 E152.001257	Substation new RTO and FLM	25 /15
	E102 012501	Domoto Fault Indication and Load Monitors	20 /10
	E150 001223	Newport-Elec Tool/Equin	27,417
	L 150.001225 NA	Misc Non-Investment	(5.871)
	F103 012099	Canitalized-MN-Sales Tax Rfd - Elec	(2,638,022)
System Expansion	or Upgrades for I	Reliability and Power Quality	(2,030,022)
	E103.003453	Tap Cable Replacement 2nd Tier Minnesota	10,956,911
	E103.003452	Mainline Cable Replacement - Reactive - NSPM	2,204.089
	E103.001044	NSPM-Poor Performing Fdr Blanket	1,539,791
	E103.009970	Mainline Cable Replacement - Proactive 2nd Tier - NSPM	463,177
	E114.007693	Reliability Monitoring System (REMS): MN	389,797
	E142.012191	Reliability Upgrades (REMS) to BLC063 feeder	30,692
	E114.013511	Install Automated Switches to Improve Performance - MN	22,722
Grand Total			166,748,452

Mitigation		2016
IDP Category Number	Mitigation Name	Expenditures
Age-Related Replacements and As	set Renewal MN Major Storm Recovery BlanketMN	10 6/2 265
F114 006616	MN Replace/Reinforce Non-Compliant Poles	6 554 500
E151.016446	Jackson St Rebuild	6,407,862
E103.004666	Hollydale - Replace Failed 69kV/13.	2,267,382
E103.014456	Replace 5 distribution breakers at Merriam Park	1,897,840
E154.011354	Install Cottonwood stepdowns to enable retirement of sub	1,613,100
E143.014668	WIL086 OH to UG Conversion	1,450,890
E103.016067	New 70 MVA reserve TR 115/13.8 kV	1,307,595
E141.013910 E103.009150	SI. Anthony Fails Hydro TSKV Cable Replacement SPCC NSPM Oil Spill Prevention	1,200,398
F141 001141	Mpls-OH Rebuilds	1,149,938
E147.004711	Funding for CO109 Gravel Pit phase	1,135,644
E150.013542	Woodbury Drive Road Move 3000ft Feeder at Bailey	891,443
E151.012282	Reconductor RAM73 Mainline	849,204
E151.013595	SSI: Convert St Clair 4kV to 13.8kV	840,680
E143.013748	SAV River Crossing	832,481
E103.015161 E141.010296	Purchase 50 MVA reserve transformer	/88,0//
F156 001292	White Bear-OH Rehuilds	637,073
E142.009661	OH Rebuild Mtka increase	634,621
E151.016150	Hamline Station	616,406
E150.003703	Woodbury Lakes OH to UG conversion	567,705
E103.011423	RCSII Replacement Project - NSPM	537,487
E141.017360	Chicago - Washington Relocation	523,522
E103.012612	ELR MN Sub TRs	509,618
E147.001209	Maple Grv-OH Rebuild	507,272
F141 017359	MPLS LIG Network Vault Blanket	432,807
E156.008247	WBL Tap Cables	424,931
E142.004727	Co Rd 109, Phase 2-UG Conv	382,196
E154.012309	Remove Eden Valley to Watkins line	337,041
E153.012431	Convert SOS 4kV to 13.8kV	302,874
E154.016227	Freeport to Black Oak Rebuild	257,960
E151.016970	MLS stadium OH/UG Relocation	245,358
E101.010097 E103.011801	STP UG NELWOIK VAUL DIALIKEL	220,040
E103.011091	ELR MPLS Vault Tops	165.192
E147.002745	RM: Relocate OH mainline for Hwy 241 from Co Rd 19 to McIver Ave NE: St Michael MN: LAP311	157,545
E103.014355	Rewind failed 115KV - 13.8KV 70MVA transformer	104,731
E141.012673	Replace Fifth Street FST Switchgear	96,389
E114.017864	MN/Capital Pole Inspections	95,654
E145.019635	ND Substation Fence Improvement	68,286
E103.013804 E151.012621	Upgrade rence at Buttalo Lake	60,/16 57.149
F144 015240	Replace Jordan Sub's Aging Equipment	54 149
E141.015959	Apache TR 1 Emergency Replacement	42,451
E103.013521	ELR MN Sub RTUS	32,573
E103.013576	reserve 70 MVA 115/13.8 kV transformer	1,916
E103.012603	ELR MN Sub Regulators	1,614
E103.015305	/ MVA Spare	1,335
E103.016670	Purchase reserve transformer 14 MVA 69-13.8 KV	635
E131.013039 E147.015160	ELR STF Vault Tops Replace failed PKL TR3	00 4
E154.015412	Franklin TR4 Replacement	2
E154.014732	Sauk Rapids overhead to underground	(22,329)
System Expansion or Upgrades for	Capacity	
E142.013447	Install TR at new Hazeltine sub	7,535,079
E144.013445	Add 5UMVA Eastwood TR3 and feeders	2,708,703
E153.012465 E154.002521	Install lie iur 303002 Install second hank at Fiesta City	2,323,379 2,004,002
F156.002824	Add 2nd bank at Baytown to eliminate N-1 risk	2,004,092
E141.016992	CABLE DUCT Millwright Bldg 321 5th Av	947,218
E141.002682	Replace Failed Network Protectors on FST Network	944,666
E147.014686	Reconfigure ties on TWL feeders	475,018
E141.016015	Add LTC Control at 5th St. Sub	466,330
E141.014517	New ELP teeder	437,836
E147.016782	EXTERN TO A TO TELEVE TWEDDA	391,292

Mitigation	1	2016
IDP Category Number	Mitigation Name	Expenditures
E154.0063	37 New First Lake substation in Monticello, MN	370,057
E144.0128	35 Reconductor 2 mi SCH211 feeder.	356,724
E141.0163	35 Block 69 Residential Vault Ryan Co	326,510
E142.0147	09 T: High side rebuild at BLC due to SWTC	321,076
E147.0144	78 Reconfigure ties for TWL079	301,034
E141.0169	91 NTWK TRS Millwright Bldg 321 5th Ave S	227,917
E151.0116	13 Rebuild Public Health Vault	220,886
E141.0163	33 Block 75 Residential Vault Project	199,998
E154.0070 E141.0159	22 Extend 3 phase to new development in Salten - Soun St	165,000
E141.0136 E103.0144	57 Sub Fiber Communication Cutover	140.034
E103.0144 E103.0080	33 Environmental Work NSPM-EI	134 063
E103.0000	18 St Paul-OH Reinforcements	133,632
E156.0088	50 Install switches on OAD075 and transfer load to relieve NOI	122,378
E147.0144	58 Install tie for BRP063	114,780
E147.0012	19 Maple Grv-UG Reinforcements	114,140
E150.0087	40 Reconductor & Reinsulated CGR71 to AFT322	91,016
E151.0024	40 Extend MPK66 to US Bank east, ATO	90,488
E150.0124	53 Replace RRK TR1 with 50MVA and add one feeder	72,566
E142.0148	29 Install 2nd feeder at Plato	63,072
E142.0045	32 Chaska Sub FDR61 - Reinforcement Pr	60,729
E141.0146	94 U of M CHP Express Feeders	54,827
E142.0090	45 Install Bluff Creek 115/13.8kV 50MVA TR#3-CANCELLED	52,419
E144.0011	37 Southeast-UG Reinforcements	44,330
E156.0125	79 Install new fder tie for KOL64	35,870
E147.0126	75 HOL061 3 Phase Upgrade	22,252
E143.0135	00 Extend WSG062 to relieve WSG072	22,069
E142.0110	D6 SSI: Install Waconia TR2	15,760
E154.0145	51 Remove and Retire Empire Park substation	13,464
E141.0149	401 Nicollet - New Vault	13,382
E141.0116	98 Indiana-IDA064 new reinforce	11,957
E151.0108	08 Install DBL082 feeder	7,545
E143.0011	72 Edina-OH Reinforcements	6,813
E147.0027	38 Install Basset Creek BCRTR2 50MVA	5,095
E156.0101	72 Install new feeder at RAM	4,020
E147.0110	58 Plymouth-Area Power Grid Upgrades	4,014
E141.0075	14 Oakland Install 13.8kV #1#2 50MVA 8 fdrs	3,847
E141.0149	50 4 Marquette Ave - New Vault	2,013
E 154.0012	Add 20MVA WASTR2 and 1 fdr	I,U00 1,022
E144.0133	70 Aud Zolviva wastas dilu i lui	נט, ו דרכ
E131.0124 E141.0079	77 Inst 12 9kV Higwatha #1 50MV/A	2/0
E141.0078 E1/4 0129	74 INSETS.OKV Fildwallia # I SUWVA 73 Install Can Bank at Crystal Foods	230
E144.0123	24 Install pow foodor MNI072	237
E134.0133	20 Poinforce Lake Emily TP1 to $1/MVA$	11
F144.0134	Reinforce Sibley Park Feeder Exits	4
F153 0079	44 Install 14 MVA Pinestone sub-convert from 4 kV	(72)
E153.0077	Chermillion River 63	(512)
E150.0123	12 Replace PMC on CGR64 with PMH-9	(21.216)
E141.0173	51 JAPS-OLSON 7500 Excelsion Blvd	(25.018)
E154.0125	97 Upgrade Freeport substation to 12.5kV	(54.572)
E103.0120	29 Capitalized-MN-Sales Tax Rfd - Elec	(861,748)
Projects related to Local (or oth	er) Government-Requirements	
E141.0162	74 Nicollet Mall Street Scape	14,682,021
E141.0141	16 Washington Ave Relocation - Hennipin to 5th Ave	3,103,615
E156.0142	39 RAM071 - Cty Rd B Road Work Maplewood	1,721,310
E141.0153	01 Douglas Dr OH-UG Conversion	1,218,429
E151.0169	71 White Bear Ave Relocation	877,760
E144.0128	54 County Road 20 Road Move	772,040
E154.0070	55 Hwy 101 and County Rd 36 Overhead Relocation	700,449
E141.0152	06 St. Anthony Bridge Relocation	572,890
E143.0001	59 Road Widening Minnetonka CR5 and CR73	538,997
E154.0168	54 2nd St N Relocation Project	519,297
E156.0154	UB LEX61/71/73 Road Recon	465,240
E103.0113	58 NSPM facility transfers from 3rd Party Owned Poles	459,576
E150.0091	11 Reic ILK/7 OH on Century for Cty Rd Widening	428,861
E150.0159	57 Kobert Street Relocation W St Paul	428,025
E143.0167	45 Normandale Blvd - Relocate UG facilities for road widening	395,791
E141.0134	26 LaSalle Paving Project	313,745

Mitigatio		2016
IDP Category Number	Mitigation Name	Expenditures
E141.0160	5601 Lake St PMH Relocation	290,991
E151.0012	St Paul-UG Relocations	286,538
E141.0141	OH-UG Chty 9 - France to Hwy 81	242,478
E 141.0022 E142.0054		210,723
E143.0050 F144.0011	Southeast-UG Relocations	213,703
F142 0147	County Road 101 OH-UG	189.823
E142.0085	County Rd 17, Delano, Road Move	155,401
E147.0045	Medina-Hwy 101 Overhead Fdr-RM	146,350
E150.0114	Hastings Bridge Re-route ductbank for pier #	⁴ 5 Hwy 61 136,266
E142.0138	T: Rebuild head end of WSG362 due to SWT	C T-line project 120,718
E154.0012	Northwest-UG Relocations	112,546
E144.0022	Southeast-UG Service Conv	111,520
E154.0139	T: Annandale Town Rebuild	111,012
E144.0141	Madison Ave Manholes Mankato	93,661
E151.0022	St Paul-UG Service Conv	90,813
E 150.0022 E144.0136	Dresbach L-90 Re-Route 3 Mi OH	04,144 77 540
E144.0130	Mntka-IIG Service Conv	72 598
E156.0012	White Bear-UG Relocations	68.579
E147.0012	Maple Grv-UG Relocations	65,690
E142.0011	Mntka-UG Relocations	50,689
E143.0022	Edina-UG Service Conv	44,463
E154.0022	Northwest-UG Service Conv	35,265
E150.0022	Newport-UG Service Conv	34,107
E151.0123	35E Relocation	29,272
E147.0022	Maple Grv-UG Service Conv	28,420
E142.0159	OH-UG Minnetonka Hwy 101 and Excelsion	19,840
E147.0146	Hwy 610 Extension	18,818
E143.0140 E144.0152	Mankata Downtown Civic Contor Project	9,043
E 144.0132 F144.0143	Morton County Road 2 Relocation	4,104 2,597
F142 0147	T. High side rebuild at BLC due to SWTC	1,144
E143.0158	City of Richfield OH-UG	997
E141.0153	SLP Reroute	372
E144.0157	Winona Hwy 43 Bridge Ductline Re-route	28
E156.0154	OAD071 Frost Ave Maplewood	(3)
E144.0153	CAPX 2020 OH-UG in Zumbrota	(7)
E156.0130	St Croix River Bridge	(3,813)
E147.0157	Vicksburg OH-UG	(125,422)
E156.0142	OAD075 OH-UG 10th St. 694 to Hadley. City	of Uakdale (273,345)
E103.0010	MN-Electric Meter Blanket	5.090.194
New Customer Projects and Ne	Revenue	
E114.0156	MN LED Streetlight Program	4,604,306
E156.0012	White Bear-UG Extensions	2,541,607
E150.0059	Newport-UG Extensions	1,937,722
E141.0173	305 NICOLLET CONSTRUCTION POWER	1,927,601
E 141.0103 E147.0147	Olympus Tochnologios Sorvico	1,730,897 1,742,159
E147.0147	White Bear-UG Services	1,742,130
E154.0012	Northwest-UG Extensions	1,309,363
E144.0027	Switch load to new Summit Ave Bank #2 Fee	eder 1.222.288
E144.0038	Wanamingo - Pine Ridge development 82 un	its 947,585
E150.0012	Newport-UG Services	947,317
E142.0103	New Germany Trophy Lake 45 lot URD	840,766
E141.0105	Serve Children's Hosiptal Addition (ATO and	Pri Svc) 835,975
E144.0011	Southeast-UG Services	835,680
E142.0011	Mntka-New UG Services	808,069
E154.0012	INUTITIVEST-NEW UG SERVICES	/63,292
E 143.0025 E147.0012	Manle Gry-New Flec UC Services	4.7 WVA /51,/91
E 147.0012 F156 0012	White Bear-IIG Street I ts	530,800
E143.0012	Edina-New UG Street Lights	462.347
E141.0011	Mpls-OH Services	461.619
E141.0011	Mpls-New OH Street Lights	430,595
E151.0012	St Paul-OH Services	400,159
E154.0111	Paynesville Mastermark Plastic NB Convert to	o 35kV 369,478
E151.0150	Port Authority Barge Road	358,220

	Mitigation		2016
IDP Category	Number	Mitigation Name	Expenditures
	E150.001229	Newport-UG Streetlights	337,921
	E147.001215	Maple Grv-New UG Street Lights	321,044
	E144.001181	Sourcest-on Streetlights	284,088
	F144.001178	Southeast-OH Services	232,042
	E156.001555	Upgrade feeder exit with 1000 Al and reactor	211.029
	E143.001167	Edina-UG Services	209,625
	E144.001182	Southeast-UG Streetlights	178,433
	E156.001286	White Bear-OH Extension	174,847
	E141.015298	900 5th St S FST087 - FST077 Extension	151,552
	E142.001154	Mntka-New UG Street Lights	144,950
	E154.001274	Northwest-New OH Street Lights	120,247
	E142.001150	Mntka-OH Extension	117,017
	E151.001241	St Paul-UG Services	112,768
	E141.01/304	White Pear OH Services	100,009
	E150.001287	Newport-OH Streetlights	97,007
	F151 001243	St Paul-OH Streetlights	80,947
	E154.001276	Northwest-New OH Services	70.135
	E143.001166	Edina-New OH Services	60,657
	E156.001289	White Bear-OH Street Lights	54,679
	E147.001211	Maple Grv-New OH Street Lights	52,730
	E143.001168	Edina-New OH Street Lights	52,172
	E142.014619	Woodland Cove JT Devlopment, Minnetrista, MN	50,883
	E150.001225	Newport-OH Services	48,145
	E142.001153	Mntka-New OH Street Lights	43,267
	E150.014745	Dakota Aggregate-RMT312 Extend OH 5500ft	40,301
	E143.002573	Install switches to eliminate N-1 on WIL/7 4 MVA	39,/19
	E147.001213	St Paul LIG Street Lights	27,401
	F142 001151	Mntka-OH Services	24,003
	E141.000640	Install a new tie to PKL85 to eliminate N-1 on MEL65	13.096
	E141.015296	700 4th St S Extension MSFA	462
	NA	Misc UG Extension	(6,866)
	E153.001259	SD-UG Extension	(13,490)
	E154.001278	Northwest-New UG Street Lights	(20,980)
	E141.015202	500 and 600 4th St S Extension to Wells Fargo	(277,212)
Non-Investment	E102 016490	Solar Cardon Sub Work	8 007 405
	E103.010400	Aurora Solar Sub Work	3,010,991
	E154.015448	Northwest Solar Garden Extensions	2,825,738
	E150.015447	NSPM Solar Gargen Extensions	2,653,371
	E156.015451	NSPM Solar Garden Extensions	1,534,322
	E114.010645	Clearing WO for CRS credits	858,983
	E142.015450	NSPM Solar Garden Extensions	754,181
	E103.016887	Solar Garden Communication Line Equip	365,233
	E142.016122	Geronimo Aurora Solar Projects	357,719
	E103.016481		308,963
	E104.010124	Aurora Solar Project NDT	190,/01 102 077
	F103 016885	Aurora Solar - Business Systems Comm Related	173,277
	E143.015445	NSPM Solar Garden Extensions	115.208
	E141.016062	Solar Garden Ext - Mpls	4,567
	E156.016141	Aurora Solar Project WBL	(34,982)
	E144.016140	Aurora Solar Project SE	(97,286)
	E144.001183	Electric New Construction Contributions in Aid	(106,705)
	E147.001216	Electric New Construction Contributions in Aid	(113,155)
	E142.001155	Electric New Construction Contributions in Aid	(151,050)
	E154.001279	Electric New Construction Contributions in Aid	(195,266)
	E150.001230	Electric New Construction Contributions in Aid	(205,96U) (200,000)
	F151 001245	Electric New Construction Contributions in Aid	(379,290) (593,831)
	E156.001245	Electric New Construction Contributions in Aid	(668,703)
	E141.001140	Electric New Construction Contributions in Aid	(2,629,488)
	E144.015449	Southeast Solar Garden Extensions	(12,402,871)
Other			
	E103.001041	MN-New Bus Transformer	19,956,260
	NA	Fleet Purchases	3,179,201
	E114.01/85/	IVIN EIEC IVIXED WORK ADJUSTMENT	o,450,994

	Mitigation		2016
IDP Category	Number	Mitigation Name	Expenditures
	E103.014464	Replace Frame Relays in NSPM	2,632,923
	E103.002265	Capitalized Locating Costs-Elec UG MN	548,815
	E141.003695	Univ of MN Lease for Ductline/Reimbursement	525,786
	E103.001738	MN Subs tools & equip	448,968
	E103.011405	Install feeder load monitoring at selected subs	364,830
	E151.001252	St Paul-Elec Tools & Equip	315,196
	E103.014467	Sub Fiber Communication Cutover	174,083
	E103.013581	Remote Fault Indication and Load Monitors	159,194
	E103.002100	2002 Spec Cnstr - Sm Tool/Equipment Blanket for NSPM	152,215
	C115.006786	Logistics-NSPM Tools Blanket	125,423
	E103.013567	Install feeder load monitoring at selected subs	116,193
	E154.001273	Northwest-Elec Tools/Equip	103,396
	C103.013336	Tools and Equipment - Locating	96,322
	E103.013585	Substation new RTU and FLM	94,971
	E114.006438	Intelliteam SG Rollout	90,574
	C103.002113	Tools & Equipment-Transportation Blanket	64,844
	E147.001210	Maple Grv-Electric Tools & Equip	60,216
	E145.001206	ND-Electric Tools & Equip	57,928
	E153.001257	SD-Tools & Equip	57,747
	E103.010660	VAR System Project	57,176
	NA	Elec Dist Communications Softw	51,638
	NA	Misc Tools and Equipment	41,998
	E103.002099	NSPM Metering Sys-Tools & Equipment Blanket	40,243
	E144.001190	Southeast-Elec Tools & Equip	39,685
	E150.001223	Newport-Elec Tool/Equip	22,934
	E103.001739	MN Subs Constr tools	21,887
	E118.017461	Land for Turkey Ridge Radio Tower	19,572
	E156.001297	White Bear-Electric Tools & Eq	15,284
	E143.001164	Edina-Elect Tool/Equip	9,165
	E142.001149	Mntka-Elec Tools/Equip	5,939
	E145.013434	ND-Dist Sub Communication Equipment	608
	E141.001133	Mpls-Electric Tools & Equip	(22,171)
	E103.010365	NSPM General Equipment - Communications	(182,557)
	E103.012099	Capitalized-MN-Sales Tax Rfd - Elec	(5,017,837)
System Expansion of	or Upgrades for	Reliability and Power Quality	
	E103.003453	Tap Cable Replacement 2nd Tier Minnesota	16,979,613
	E103.003452	Mainline Cable Replacement - Reactive - NSPM	2,008,082
	E114.007693	Reliability Monitoring System (REMS): MN	575,948
	E103.001044	NSPM-Poor Performing Fdr Blanket	381,334
	E103.009970	Mainline Cable Replacement - Proactive 2nd Tier - NSPM	175,816
	E142.012191	Reliability Upgrades (REMS) to BLC063 feeder	61,398
Grand Lotal			206,212,951

Mitigation		2017
IDP Category Number	Mitigation Name	Expenditures
Age-Related Replacements and As	set Renewal MN Major Storm Recovery BlanketMN	15 004 521
F114.005557	MN Replace/Reinforce Non-Compliant Poles	5.911.259
E141.012673	Replace Fifth Street FST Switchgear	3,711,133
E103.014456	Replace 5 distribution breakers at Merriam Park	3,563,505
E154.011354	Install Cottonwood stepdowns to enable retirement of sub	2,118,614
E103.004666	Hollydale - Replace Failed 69kV/13.	1,786,417
E141.013910	St. Anthony Falls Hydro 15kV Cable Replacement	1,6/5,0/5
E114.018129 F143.017843	CSAH 53 OH to LIG	1,311,348
E103.012612	ELR MN Sub TRs	1,238,820
E147.004711	Funding for CO109 Gravel Pit phase	1,210,912
E114.018176	MN - OH Rebuild Tap/Backbone/Sec Blkt	1,193,195
E103.009150	SPCC NSPM Oil Spill Prevention	857,665
E114.018274	MN - UG Conversion/Rebuild Blanket	851,719
E150.013542	Woodbury Drive Road Move 3000ft Feeder at Bailey	823,257
E151.010097 E141.001141	STP UG NELWOIK VAUL DIALIKEL Mals-OH Pabuilds	768,309
F151 012282	Reconductor RAM73 Mainline	730,379
E151.016150	Hamline Station	723,329
E147.001209	Maple Grv-OH Rebuilds	620,345
E142.004727	Co Rd 109, Phase 2-UG Conv	599,485
E143.014668	WIL086 OH to UG Conversion	592,893
E151.013595	SSI: Convert St Clair 4kV to 13.8kV	542,181
E144.013060 E1/1.017359	M&R Dally Reduild MPLS LIG Network Vault Blanket	536,346 533 544
F142 009661	OH Rebuild Mtka increase	531,154
E114.018174	MN - OH Reloc All Other Type Blkt	513,757
E103.011423	RCSII Replacement Project - NSPM	511,432
E103.014355	Rewind failed 115KV - 13.8KV 70MVA transformer	491,427
E154.012309	Remove Eden Valley to Watkins line	468,741
E114.018275	MN - UG Services Renewal Blanket	461,337
E150.003703	Wooddury Lakes OH to UG conversion Purchase reserve transformer 14 MVA 69, 13 9 KV	449,901
F156 001292	White Bear-OH Rebuilds	410,799
E143.013748	SAV River Crossing	358,918
E103.013804	Upgrade fence at Buffalo Lake	357,058
E103.013521	ELR MN Sub RTUs	354,839
E147.017834	Bass Lake Road OH-UG	334,691
E153.012431 E147.002745	CONVERTISUS 4KV to 13.8KV DM: Delegate OH mainling for Huny 241 from Co. Dd 10 to Melver Ave NE: St Michael MN: LAD211	324,254
E147.002745 E151.013639	RM: Relocate on mainine for mwy 241 nom co Ru 19 to Microel Ave NE: St Michael MN: LAPSTT	285 533
E141.010286	Replace Dustproof protectors	278.260
E103.011891	ELR MN Sub Switches	262,081
E150.018675	Replace Afton TR2 with System Reserve	260,008
E114.018177	MN - OH Rebuild All Other Type Blkt	245,981
E141.017360	Chicago - Washington Relocation	217,408
E141.001664	ELR MPLS Vault Tops	88,117
E114.017804 E151.016970	MIX/Capital Pole Hispections MIS stadium OH/IIG Relocation	01,009 38.451
E114.018178	MN - OH Services Renewal Blanket	35,021
E156.008247	WBL Tap Cables	14,472
E103.016931	Battery Upgrade for Frame Relay Replacements - NSPM	7,389
E103.009312	SSI: MN Infrastructure Investment	1,518
E103.017653	ELR MN Sub Batteries	104
E103.013576 E151.012621	reserve /U MVA 115/13.8 KV transformer	5
F103 015161	Purchase 50 MVA reserve transformer	2
E103.015305	7 MVA Spare	2
E103.016067	New 70 MVA reserve TR 115/13.8 kV	2
E154.016227	Freeport to Black Oak Rebuild	(7,839)
E145.019635	ND Substation Fence Improvement	(12,842)
E151.016446	Jackson St Rebuild	(413,423)
E156.002804	Add 2nd bank at Baytown to eliminate N-1 risk	4.689.485
E142.011006	SSI: Install Waconia TR2	2,762,123
E153.012465	Install tie for SOS062	1,631,786
E141.002682	Replace Failed Network Protectors on FST Network	1,127,290

	Mitigation		2017
IDP Category	Number	Mitigation Name	Expenditures
	E154.002523	Reinforce Lowry TR and replace regulators	1,071,323
	E144.016597	Add Crystal Foods 62 Feeder	952,225
	E147.011058	Plymouth-Area Power Grid Upgrades	501,197
	E142.014629	Reconfigure feeder ties CNC073	490,707
	F141 016992	CABLE DUCT Millwright Bldg 321 5th Av	411,139
	E143 018586	Health Partners ATO 8170 33RD AVE S	385,774
	E141.017363	365 Nicollet Residential Tower	383,626
	E150.012576	Install South Washington ERU Sub	367,662
	E156.008860	Install switches on OAD075 and transfer load to relieve NOL	356,948
	E142.013447	Install TR at new Hazeltine sub	268,564
	E151.011613	Rebuild Public Health Vault	253,209
	E144.014347	Add Dundas 072 Feeder	249,143
	E144.012835	Reconductor 2 mi SCH211 feeder.	208,432
	E103.008083	Environmental Work NSPM-EL	197,039
	E141.01/361	JAPS-OLSON /500 Excelsior Blvd	141,077
	E143.0011/2	Edina-UH Reinforcements	125,058
	E114.018279	Northwest UC Deinforcement	89,402
	E154.001282	St Paul-OH Painforcements	70,274 64,340
	F144 013445	Add 50MVA Fastwood TR3 and feeders	59 342
	F143 013500	Extend WSG062 to relieve WSG072	56 833
	E154.007052	Extend 3 phase to new development in Sartell - 50th st	51.014
	E147.001219	Maple Grv-UG Reinforcements	42,453
	E144.016590	Belle Plaine Battery plus Solar Project	42,219
	E114.018280	MN - UG Reinforce Blkt All Other	37,085
	E147.016782	Extend IDA064 to relieve TWL064	32,441
	E142.004532	Chaska Sub FDR61 - Reinforcement Pr	18,954
	E141.014517	New ELP feeder	16,107
	E114.018181	MN - OH Reinforce Blkt Tap/Back/Sec	15,966
	E150.008740	Reconductor & Reinsulated CGR71 to AFT322	13,862
	E114.018182	MN - OH Reinforce Blkt All Other	12,741
	E141.014694	U of M CHP Express Feeders	11,103
	E156.012599	Install new fder tie for KUL64	10,688
	E147.012075	HOLOGI 3 Pridse Upgrade	8,415
	E154.002521	Install 2nd tansformer at Sauk River	5,636
	F141 015808	Cascade load relief to MDT	5 549
	E141.016335	Block 69 Residential Vault Rvan Co	5,547
	NA	Reinforce GNL072 equipment in sub	5,313
	E114.018342	MN - New Business Network Blanket	3,750
	E150.012453	Replace RRK TR1 with 50MVA and add one feeder	3,046
	E150.012312	Replace PMC on CGR64 with PMH-9	2,886
	E144.001187	Southeast-UG Reinforcements	1,908
	E103.014467	Sub Fiber Communication Cutover	1,463
	E151.002440	Extend MPK66 to US Bank east, ATO	88
	E151.010808	Install DBL082 feeder	50
	E144.012973	Install Cap Bank at Crystal Foods	(50)
	E142.014709	1. High side reputitu at BLC due to SWTC	(335)
	E147.014000 E1/1 016001	NTWK TPs Millwright Bldg 321 5th Ave S	(404)
	F154 006387	New First Lake substation in Monticello MN	(35 067)
	E154 014561	Remove and Retire Empire Park substation	(77,959)
	E147.014478	Reconfigure ties for TWL079	(212,090)
	E154.012597	Upgrade Freeport substation to 12.5kV	(339,199)
	E103.012099	Capitalized-MN-Sales Tax Rfd - Elec	(646,973)
Projects related to Lo	ocal (or other)	Government-Requirements	
	E141.015301	Douglas Dr OH-UG Conversion	1,820,948
	E141.017519	35W Relocation 40th to Franklin	1,763,659
	E144.012864	County Road 20 Road Move	1,754,536
	E156.014239	RAMU/1 - Cty Rd B Road Work Maplewood	960,452
	E114.018271	MN - UG REIOC I Ap/Backbone/Sec Bikt	/63,820
	E150.009111	Keic TLK / / UH ON CENTURY TOF CTY Ka Widening	689,419
	E143.010/45	NOTHANUALE DIVU - KEIOCALE OG TACINITIES TOF TOAD WIDENING MN - OH Poloc Tap/Rackhono/Soc Rikt	587,997
	E114.0181/3	IVIN - OTT NEIUL TAP/DALKDUTE/JEL DIKL NSDM facility transfers from 3rd Party Owned Poles	535,199
	F143 000150	Road Widening Minnetonka CR5 and CR73	223,044 490 053
	E151 001251	St Paul-UG Relocations	434 686
	E141.015206	St. Anthony Bridge Relocation	430.838

	Mitigation		2017
IDP Category	Number	Mitigation Name	Expenditures
	E143.005672	EDP/ANDERSON LAKES & HWY 169/RELOCA	399,518
	E114.018273	MN - UG Service Conversion Blanket	344,969
	E114.018272	MN - UG Reloc All Other Type Blkt	302,726
	E141.014116	Washington Ave Relocation - Hennipin to 5th Ave	278,029
	E142.008544	County Rd 17, Delano, Road Move	253,580
	E134.007003	Co. Pd. 30. Poad Move	240,020
	F150 011418	Hastings Bridge Re-route ductbank for pier #5 Hwy 61	230,011
	E156.001296	White Bear-UG Relocations	233,492
	E144.002223	Southeast-UG Service Conv	193,231
	E151.016971	White Bear Ave Relocation	192,130
	E141.016028	5601 Lake St PMH Relocation	177,639
	E141.002215	MpIs-UG Service Conv	163,014
	E142.001160	Mntka-UG Relocations	145,162
	E144.001189	Southeast-UG Relocations	118,871
	E147.004557	Medina-Hwy 101 Overhead Fdr-RM	73,985
	E154.001284	Northwest-UG Relocations	54,567
	E156.002218	White Bear-UG Service Conv	53,567
	E151.002224	St Paul-UG Service Conv	47,709
	E142.002216	Marta-UG Service Conv	45,472
	E147.002219	Maple Grv-UG Service Conv	37,155
	E147.001221	Naple GIV-UG Relucations	28,844
	E150.002222	Northwest-IIG Service Conv	17 240
	F143 002217	Edina-IIG Service Conv	16 980
	E114.018174	MN - OH Reloc All Other Type Bikt	14,153
	E151.017153	Rosedale Mall Relocation	6,850
	E154.013988	T: Annandale Town Rebuild	5,641
	E103.002265	Capitalized Locating Costs-Elec UG MN	4,296
	E114.018479	MN - Pole Transfer 3rd Party Blanket	1,055
	E118.017461	Land for Turkey Ridge Radio Tower	437
	E147.014690	Hwy 610 Extension	325
	E150.015957	Robert Street Relocation W St Paul	285
	E144.014340	Morton County Road 2 Relocation	58
	E141.013426	LaSalle Paving Project	9
	E144.015253	Mankato Downtown Civic Center Project	(161)
	E130.013070	St Clotx River Bridge Madican Ava Manhalas Mankata	(190)
	E144.014112 E142.013864	T: Rebuild head end of WSG362 due to SWTC T-line project	(1,302)
	F141 016274	Nicollet Mall Street Scape	(61.308)
	E143.017171	MSP Airport - Relocate 3 Feeders for MSP	(86,250)
	E147.015783	Vicksburg OH-UG	(162,178)
	E141.014169	OH-UG Cnty 9 - France to Hwy 81	(204,531)
	E154.016854	2nd St N Relocation Project	(534,902)
Metering			
	E103.001040	MN-Electric Meter Blanket	6,773,097
New Customer Project	ts and New R	Revenue	
	E114.015600	MN LED Streetlight Program	12,376,276
	E114.018268	IVIN - UG EXTENSION BIANKEL	5,646,295
	E141.001135	Mpis-OH Services	2,410,719
	E130.003990	MN - LIG New Services Blanket	2,107,931
	E114.010207	White Bear-LIG Extensions	1,700,202
	F141 010560	Serve Children's Hosintal Addition (ATO and Pri Svc)	1,625,431
	E141.017362	365 Nicollet Construction Power	1,550,971
	E147.014741	Olympus Technologies Service	1,533,634
	E156.001288	White Bear-UG Services	1,137,102
	E154.001271	Northwest-UG Extensions	1,074,666
	E142.010321	New Germany Trophy Lake 45 lot URD	1,010,138
	E114.018171	MN - OH Extension Blanket	769,883
	E144.003805	Wanamingo - Pine Ridge development 82 units	719,257
	E144.002761	Switch load to new Summit Ave Bank #2 Feeder	718,211
	E142.001152	Mntka-New UG Services	695,530
	E144.001179	Southeast-UG Services	536,634
	E150.001226	Newport-UG Services	525,627
	E154.011195	Paynesvine Mastermark Plastic INB CONVERT TO 35KV Northwest New LIC Services	518,507
	E134.001277	Install Feeder tie to eliminate NL1 on WII 86 / 9 MV/A	310,418 161 975
	E143.002372	Dakota Angregate-RMT312 Extend OH 5500ft	404,075 110 221
		Saleta Aggiogate fair of Enterna of Cooolt	777,224

	Mitigation		2017
IDP Category	Number	Mitigation Name	Expenditures
	E151.015041	Port Authority Barge Road	448,176
	E114.018046	MN - UG New Street Light Blanket	426,284
	E141.01/304	Male Now OH Street Lighte	301,100
	E141.001136	Manla Gru-New Flac LIG Services	308 226
	F151 001240	St Paul-OH Services	279,935
	E142.001150	Mntka-OH Extension	278,673
	E143.001169	Edina-New UG Street Lights	276,855
	E144.001181	Southeast-OH Streetlights	219,066
	E114.018355	MN - UG Street Light Rebuild Blanket	180,121
	E143.001167	Edina-UG Services	173,110
	E114.018172	MN - OH New Services Blanket	169,007
	E156.001286	White Bear-OH Extension	165,836
	E144.001178	Southeast-OH Services	164,469
	E141.010332	St David LIC Services	133,039
	E151.001241 E150.001229	St Pdul-UG Selvices	113,573
	E156.001227	Ungrade feeder exit with 1000 Al and reactor	102 124
	E156 001287	White Bear-OH Services	97,204
	E154.001274	Northwest-New OH Street Lights	83,046
	E154.001278	Northwest-New UG Street Lights	75,778
	E114.018045	MN - OH New Street Light Blanket	71,957
	E144.001182	Southeast-UG Streetlights	71,054
	E156.001290	White Bear-UG Street Lts	69,187
	E154.001276	Northwest-New OH Services	65,414
	E147.001215	Maple Grv-New UG Street Lights	56,376
	E143.002573	Install switches to eliminate N-1 on WIL// 4 MVA	51,125
	E156.001289	White Bear-OH Street Lights	48,258
	E143.001100	St Paul-OH Streetlights	40,107
	F114 018354	MN - OH Street Light Rebuild Blanket	47,311
	E150.001228	Newport-OH Streetlights	41,453
	E147.001211	Maple Grv-New OH Street Lights	37,016
	E142.001153	Mntka-New OH Street Lights	31,510
	E143.001168	Edina-New OH Street Lights	26,098
	E150.001225	Newport-OH Services	24,810
	E142.001151	Mntka-OH Services	16,943
	E141.000640	Install a new tie to PKL85 to eliminate N-1 on MEL65	14,194
	E151.001244	St Paul-UG Street Lights	12,016
	E147.001213	Maple Grv-UH Services	7,955 (E 422)
	F141 001139	Milica-New UG Street Lights	(73,080)
Non-Investment	ETTI.00TT07		(10,000)
	E154.015448	Northwest Solar Garden Extensions	5,151,639
	E156.015451	NSPM Solar Garden Extensions	1,840,205
	E103.016480	Solar Garden Sub Work	1,836,106
	E141.001140	Electric New Construction Contributions in Aid	1,657,734
	E142.015450	NSPM Solar Garden Extensions	1,625,901
	E103.016887	Solar Garden Communication Line Equip	1,058,420
	E144.010140	AUTOLA SOLAL PLOJECT SE	820,212
	F154 016124	Aurora Solar Project NW	152 189
	E114 010645	Clearing WO for CRS credits	82,085
	E156.016141	Aurora Solar Project WBL	32,482
	NA	Misc Solar	15,579
	E141.016062	Solar Garden Ext - Mpls	262
	E143.001170	Electric New Construction Contributions in Aid	(31,354)
	E147.001216	Electric New Construction Contributions in Aid	(69,585)
	E103.016481	Solar Garden Sub COMM	(70,611)
	E154.001279	Electric New Construction Contributions in Aid	(87,746)
	E151.001245	Electric New Construction Contributions in Aid	(108,332)
	E100.001291 E103.016895	Lieune New Construction Contributions III Ald Aurora Solar - Rusiness Systems Comm Related	(108,128) (176,052)
	F143 015445	NSPM Solar Garden Extensions	(170,952) (194,320)
	E150.016123	Aurora Solar Project NPT	(206.134)
	E142.016122	Geronimo Aurora Solar Projects	(219,192)
	E142.001155	Electric New Construction Contributions in Aid	(243,987)
	E150.001230	Electric New Construction Contributions in Aid	(295,170)
	E144.001183	Electric New Construction Contributions in Aid	(800,664)

	Mitigation		2017
IDP Category	Number	Mitigation Name	Expenditures
ibi outegoly	E103.016168	Aurora Solar Sub Comm	(1.856.755)
	E144.015449	Southeast Solar Garden Extensions	(5,777,385)
Other			
	E103.001041	MN-New Bus Transformer	16,884,576
	NA	Fleet Purchases	14,450,660
	E114.017857	MN Elec Mixed Work Adjustment	1,790,556
	E103.010660	VAR System Project	660,807
	E103.014464	Replace Frame Relays in NSPM	583,709
	E103.002265	Capitalized Locating Costs-Elec UG MN	488,411
	E103.010365	NSPM General Equipment - Communications	365,585
	E141.001133	Mpls-Electric Tools & Equip	348,912
	E103.011405	Install feeder load monitoring at selected subs	310,754
	E151.001252	St Paul-Elec Tools & Equip	287,385
	E103.002100	2002 Spec Cnstr - Sm Tool/Equipment Blanket for NSPM	270,784
	C103.002113	Tools & Equipment-Transportation Blanket	240,970
	E144.001190	Southeast-Elec Tools & Equip	237,064
	E103.013581	Remote Fault Indication and Load Monitors	194,632
	E154.001273	Northwest-Elec Tools/Equip	178,413
	E103.013585	Substation new RTU and FLM	171,677
	E142.001149	Mntka-Elec Tools/Equip	152,329
	E103.001738	MN Subs tools & equip	143,693
	E103.002099	NSPM Metering Sys-Tools & Equipment Blanket	102,484
	C115.006786	Logistics-NSPM Tools Blanket	97,537
	E153.001257	SD-Tools & Equip	79,656
	E145.013434	ND-Dist Sub Communication Equipment	77,872
	E150.001223	Newport-Elec Tool/Equip	68,553
	E143.001164	Edina-Elect Tool/Equip	55,012
	NA	Replace Frame Relays in NSPM	53,369
	E103.014467	Sub Fiber Communication Cutover	44,550
	E156.001297	White Bear-Electric Tools & Eq	43,504
	E147.001210	Maple Grv-Electric Tools & Equip	29,680
	C103.013336	Tools and Equipment - Locating	29,180
	E103.001739	MN Subs Constr tools	28,722
	E103.013567	Install feeder load monitoring at selected subs	26,237
	E145.001206	ND-Electric Tools & Equip	15,270
	NA	Elec Dist Communications Softw	6,948
	E118.017461	Land for Turkey Ridge Radio Tower	2,052
	E114.006438	Intelliteam SG Rollout	985
	E141.003695	Univ of MN Lease for Ductline/Reimbursement	(187,304)
	E103.012099	Capitalized-MN-Sales Tax Rfd - Elec	(3,345,196)
System Expansion	or Upgrades for	Reliability and Power Quality	14.050.047
	E103.003453	Tap Cable Replacement 2nd Tier Minnesota	14,950,947
	E114.018277	MN - URD Cable Replacement Blanket	3,378,027
	E114.018471	MN - Feeder Cable Repi Blankel Proactive	1,758,968
	E114.018278	NSDM Door Derforming Edr. Dienket	947,270
	E103.001044	Norm-rour Perioring System (DEMS): MN	۵/U,U82 ۵۵٦ ۵۵۵
	E114.007693	Kellability Motificulity System (KEMS): Min Mainling Cable Deplacement - Dreastive and Tion - NSDM	337,083
	E103.009970	Mainline Cable Replacement - Produtive 200 Her - NSPM Mainline Cable Deplacement - Depative - NSDM	168,932
	E103.003452	MN Network Denowed Planket	100,891
	E114.018343	win - Network Kellewal Dialikel Deliability Upgrades (DEMS) to PLCO42 feeder	130,012
	E142.012191	NEITADIIILY OPYLAUES (NEIVIS) IO DECOUS TEEUET MNE DEMS Riankat	02,902
Grand Total	L114.0101/9		201 022 444

Mitigation		2018
IDP Category Number	Mitigation Name	Expenditures
Age-Related Replacements and Ass	Set Renewal	0.452.021
E114.018129 E114.005559	MN - Pole Replacement Blanket MN Major Storm Recovery BlanketMN	9,453,931 9,370,453
E114.003337	MN - OH Rebuild Tap/Backbone/Sec Blkt	7,433.326
E114.018274	MN - UG Conversion/Rebuild Blanket	5,979,740
E114.018275	MN - UG Services Renewal Blanket	5,105,975
E141.012673	Replace Fifth Street FST Switchgear	3,584,104
E114.018177	MN - OH Rebuild All Other Type Blkt	3,302,804
E142.011006	SSI: Install Waconia TR2 MN Mabile TD/Subs Deserve Conscitu	1,919,754
E103.011939 F114 018355	MN MODile TR/Subs Reserve Capacity MN - LIG Street Light Rebuild Blanket	1,709,555
E103.004666	Hollydale - Replace Failed 69kV/13.	1,645,482
E103.014456	Replace 5 distribution breakers at Merriam Park	1,581,129
E103.016837	MN Failed Sub TR Replacement	1,432,352
E141.018795	ELR MPLS Network Protectors	1,047,189
E103.009150	SPCC NSPM Oil Spill Prevention	1,003,013
E114.018354 E154.017782	Convert load and remove Industrial sub for city	902,893
F151 016697	STP LIG Network Vault Blanket	677.514
E103.013521	ELR MN Sub RTUS	645,165
E141.017924	Golden Valley Road OH to UG	610,668
E114.017857	MN Elec Mixed Work Adjustment	592,897
E103.011423	RCSII Replacement Project - NSPM	504,775
E103.012603	ELR MN Sub Regulators	456,883
E 103.011891 E103.017653	ELR MIN SUD SWIICHES ELR MIN Sub Batteries	453,314
E103.009312	SSI: MN Infrastructure Investment	440,003
E103.013804	Upgrade fence at Buffalo Lake	439,597
E151.013639	ELR STP Vault Tops	397,206
E144.017589	Rebuild Yellow Medicine YLM211 & YLM212	389,654
E154.013611	SSI: Convert Echo 4kV to 23.9kV	340,676
E141.01/359	MPLS UG Network Vault Blanket Battery Ungrade for Frame Delay Deplecements - NSDM	302,999
E103.010931 E144.018871	PIPOOD Interset Poles	289.865
E150.018675	Replace Afton TR2 with System Reserve	283.794
E103.016671	Purchase reserve transformer 7 MVA 69- 12.5 KV	216,699
E153.012431	Convert SOS 4kV to 13.8kV	208,481
E114.018479	MN - Pole Transfer 3rd Party Blanket	203,168
E114.017864	MN/Capital Pole Inspections	172,496
E114.018178 E144.018411	MN - OH SERVICES RENEWAI BIANKEL Rebuild Clara City CLC221	102,250
E150.013542	Woodbury Drive Road Move 3000ft Feeder at Bailey	76.024
E141.019319	Relocation 4th Street Road Project	74,142
E103.014355	Rewind failed 115KV - 13.8KV 70MVA transformer	42,132
E144.013060	M&R Dairy Rebuild	34,258
E151.018796	ELR STP Network Protectors	33,593
E141.013910	St. Anthony Falls Hydro 15kV Cable Replacement	29,500
E130.018891 F147 017834	Replace Linue Lind TRT Bass Lake Road OH-LIG	8 179
E103.019028	Reserve Transformer 70MVA at 115-34.5kV	4.617
E103.016670	Purchase reserve transformer 14 MVA 69-13.8 KV	2,727
E147.004711	Funding for CO109 Gravel Pit phase	606
E156.008247	WBL Tap Cables	24
E114.006616	MN Replace/Reinforce Non-Compliant Poles	(398)
E151.016970 E141.001664	MLS Stadium UH/UG Relocation	(1,225) (1,756)
F151 016150	Hamline Station	(1,730)
E142.004727	Co Rd 109. Phase 2-UG Conv	(3,366)
E151.016446	Jackson St Rebuild	(3,950)
E141.017360	Chicago - Washington Relocation	(4,409)
E143.014668	WIL086 OH to UG Conversion	(5,919)
E103.012612	ELR MN Sub TRs	(6,688)
E154.011354 E142.000441	OH Rebuild Mtka increase	(8,026) (11,000)
F151 012282	Reconductor RAM73 Mainline	(11,233) (17,953)
E154.012309	Remove Eden Valley to Watkins line	(34,389)
E147.001209	Maple Grv-OH Rebuilds	(49,455)
E156.001292	White Bear-OH Rebuilds	(62,039)

	Mitigation		2018
IDP Category	Number	Mitigation Name	Expenditures
	E150.003703	Woodbury Lakes OH to UG conversion	(63,741)
	E141.001141	Mpls-OH Rebuilds	(226,848)
	E143.013748	SAV River Crossing	(234,906)
	E150.019520	Flint Hills Vessel Relocation	(258,314)
	E147.002745	RM: Relocate OH mainline for Hwy 241 from Co Rd 19 to McIver Ave NE: St Michael MN: LAP311	(261,846)
System Expansion o	E141.010286	Replace Dustproof protectors	(378,829)
System Expansion o	E154 010161	Install 2nd tansformer at Sauk Diver	2 183 735
	E154.010101	Install 35KV transformer at Salida Crossing	1,494,443
	E144.013448	SSI: Add 2nd 23.9kV Transformer and feeder at Waterville	1,447,111
	E144.013445	Add 50MVA Eastwood TR3 and feeders	1,375,271
	E103.018426	SUB MN Feeder Load Monitoring	1,182,687
	E114.018181	MN - OH Reinforce Blkt Tap/Back/Sec	975,268
	E114.018344	MN - Network Reinforcement Blanket	854,861
	E153.012465	Install tie for SOS062	854,421
	E114.018279	MN - UG Reinforce Blkt Tap/Back/Sec	771,673
	E142.016725	Reinforce GNL072 feeder capacity	611,297
	E114.018280	MN - UG Reinforce Bikt All Other	575,271
	E143.016728	Reinforce HYL feeder exits	555,134
	E154.002523	Remitorce Lowry TR and replace regulators	200,287
	E141.010910	Add Dundas 072 Feeder	420,007
	F114 018182	MN - OH Reinforce Bikt All Other	297 731
	E114.018342	MN - New Business Network Blanket	212.314
	E142.011017	Reinforce GSL65 feeder ties	165,639
	E154.018812	Atwater Replace ATW062 Breaker	156,118
	E150.012576	Install South Washington ERU Sub	154,724
	E150.014325	Extend ALK064	153,605
	E143.018586	Health Partners ATO 8170 33RD AVE S	135,358
	E141.017363	365 Nicollet Residential Tower	95,287
	E154.006387	New First Lake substation in Monticello, MN	58,219
	E150.019265	Upgrade Capacity CHE62/72 for 3M	41,654
	E141.017687	LOAD TRANSFER LERU65 TO LERU73, LERU85	19,496
	E141.01/0/1	NIELU/3, Cut IOdu to MIELUOS Deinforce St Cloud SCL TD2	9,193
	E134.013728	Install 2nd feeder at Plato	3,033
	F147 011058	Plymouth-Area Power Grid Upgrades	3,049
	E150.015662	Install Chemolite CHE065 Feeder	2,306
	E156.002804	Add 2nd bank at Baytown to eliminate N-1 risk	1,828
	E154.013633	SSI: Convert Hector 4kV to 13.8kV	1,766
	E144.012835	Reconductor 2 mi SCH211 feeder.	1,475
	E144.016597	Add Crystal Foods 62 Feeder	987
	E141.014517	New ELP feeder	(0)
	E144.016590	Belle Plaine Battery plus Solar Project	(37)
	E141.016992	CABLE DUCT Millwright Bldg 321 5th Av	(4/2)
	E144.001187	Southeast-UG Reinforcements	(1,905)
	E131.011013	Replace Failed Network Protectors on FST Network	(2,785) (2,880)
	F141 017361	IAPS-OI SON 7500 Excelsion Blvd	(4,074)
	E154.002521	Install second bank at Fiesta City	(5.841)
	E147.013375	Reconfigure feeder ties CNC073	(7,553)
	E154.012597	Upgrade Freeport substation to 12.5kV	(55,400)
	E141.018733	Reinforce Daytons Vault 3	(61,628)
	E141.014694	U of M CHP Express Feeders	(66,873)
	E142.013447	Install TR at new Hazeltine sub	(72,763)
Duala ata substanti d	E141.018732	Reinforce Daytons Vault 2	(298,646)
Projects related to L	ocal (or other)	Government-Requirements	6 100 212
	E114.0181/3	win - Om Reidu Täp/Baukbulle/Seu bikl 8th Street Pelocation Hennenin to Chicago	0,120,312 5 610 210
	F114 018271	MN - LIG Reloc Tan/Backhone/Sec Blkt	2,040,318 2,010,676
	E114.018174	MN - OH Reloc All Other Type Bikt	3,472,963
	E143.017843	CSAH 53 OH to UG	2.942.293
	E114.018272	MN - UG Reloc All Other Type Blkt	1,276,821
	E150.018807	Hwy 95 Reconstruction (Manning)	864,758
	E141.017519	35W Relocation 40th to Franklin	780,342
	E114.018273	MN - UG Service Conversion Blanket	621,821
	E143.019229	Hopkins OH-UG 325 Blake Road N	553,126
	E114.018479	MN - Pole Transfer 3rd Party Blanket	522,941
	E154.019018	Sartel Pinecone Road Elec Reloc	450,641

Ν	Vitigation		2018
IDP Category N	Number	Mitigation Name	Expenditures
E	151.018808	McKnight Ave OH Feeder Relocation	449,138
E	144.019239	County 18 Relocation Project	368,466
E	154.018868	SCL 33rd South Improvements	328,050
E	142.018619	Co Rd 30 Road Move	282,905
E	144.019253	RDW 301 Potter St Relocation	242,115
E	141.016028	5601 Lake St PMH Relocation	109,915
E	143.019345	Relocation Hwy 35 106th St to Cliff Rd	63,356
E	142.018744	MIK-Woodhill Road-OH to UG	56,180
E	151.001251	St Paul-UG Relocations	8,740
E	142.001160	Mnika-UG Relocations	4,482
E	143.010743		4,101
E C		EDP/ANDERSON LARES & HWY 109/RELUCA	3,001
F	141.002215	Mpls-00 Service Conv	1,724
F	142.002210	Washington Ave Relocation - Henninin to 5th Ave	546
F	141.014110	Road Widening Minnetonka CP5 and CP73	540
F	156 002218	White Bear-IIG Service Conv	5
F	156 001296	White Bear-LIG Relocations	4
F	143 002217	Edina-LIG Service Conv	(16)
F	151 016971	White Bear Ave Relocation	(10)
F	147 001221	Maple Gry-IIG Relocations	(466)
F	156 014239	RAM071 - Ctv Rd B Road Work Maplewood	(470)
Ē	144.012864	County Road 20 Road Move	(799)
Ē	147.004557	Medina-Hwy 101 Overhead Edr-RM	(1.107)
Ē	150.011418	Hastings Bridge Re-route ductbank for pier #5 Hwy 61	(1,634)
Ē	141.016274	Nicollet Mall Street Scape	(1.865)
E	147.014690	Hwy 610 Extension	(12,443)
Ē	141.015301	Douglas Dr OH-UG Conversion	(38,692)
E	142.008544	County Rd 17, Delano, Road Move	(38,931)
E	154.007065	Hwy 101 and County Rd 36 Overhead Relocation	(40,555)
E	142.018982	VCR 1670 Stieger Lake Lane OH to UG	(98,074)
Metering			
E	103.001040	MN-Electric Meter Blanket	5,889,493
New Customer Projects	and New R	evenue	20 120 145
E	114.018268	MN - UG EXtension Blanket	20,129,145
E	114.018209	MNI - UG New Selvices Bidliket	/,908,38/ E 400 100
	114.010000	MN LED Siteetiight Plogram	3,492,103
	114.010792	MN CLE Fost Top Conversion	2,790,071
F	114.018046	MN - UG New Street Light Blanket	1 313 558
F	114.018172	MN - OH New Services Blanket	722 793
F	114.018045	MN - OH New Street Light Blanket	471 974
F	142 019281	Woodland Cove IT Extension	200 088
F	142.017201	Motka-New LIG Street Lights	86 416
F	144 001181	Southeast-OH Streetlights	36,504
F	144 003805	Wanamingo - Pine Ridge development 82 units	34,757
Ē	156.001299	White Bear-UG Extensions	28.833
Ē	150.005996	Newport-UG Extensions	24,947
E	141.017364	1910 Queen Ave N Extension	20,815
E	147.001215	Maple Grv-New UG Street Lights	18,623
E	144.001178	Southeast-OH Services	15,671
E	151.001240	St Paul-OH Services	5,198
E	147.014741	Olympus Technologies Service	4,761
E	143.002572	Install Feeder tie to eliminate N-1 on WIL86 4.9 MVA	4,408
E	156.001286	White Bear-OH Extension	3,262
E	142.001152	Mntka-New UG Services	2,463
E	143.001168	Edina-New OH Street Lights	1,889
E	144.002761	Switch load to new Summit Ave Bank #2 Feeder	1,545
E	141.010560	Serve Children's Hosiptal Addition (ATO and Pri Svc)	1,019
E	143.002573	Install switches to eliminate N-1 on WIL77 4 MVA	727
E	147.001214	Maple Grv-New Elec UG Services	648
E	154.001276	Northwest-New OH Services	234
E	154.011195	Paynesville Mastermark Plastic NB Convert to 35kV	195
E	142.010321	New Germany Frophy Lake 45 lot URD	27
E	151.015041	Port Authority Barge Road	4
E -	141.001135	Mpls-OH Services	(40)
E	156.001287	White Bear-OH Services	(64)
E F	142.001150	MILIKA-UH EXLENSION	(68)
E	131.001241	St rau-ug sei Vices	(115)

	Mitigation		2018
IDP Category	Number	Mitigation Name	Expenditures
	E156.001555	Upgrade feeder exit with 1000 AI and reactor	(374)
	E154.001277	Northwest-New UG Services	(426)
	E143.001167	Edina-UG Services	(498)
	E150.014745	Dakota Aggregate-RM1312 Extend OH 5500ft	(554)
	E150.001226	Newport-UG Services	(2,263)
	E144.001179	Southeast-OG Services	(2,545)
	E141.001139	Mpls New OH Street Lights	(4,230)
	E154 001274	Northwest-New OH Street Lights	(4,771)
	F143 001169	Edina-New LIG Street Lights	(9,133)
	E150.001229	Newport-UG Streetlights	(19,577)
	E156.001288	White Bear-UG Services	(20,973)
	E154.001278	Northwest-New UG Street Lights	(21,161)
	E147.019271	Takeda UG Extension and ATO	(29,595)
	E154.001271	Northwest-UG Extensions	(34,445)
	E156.001290	White Bear-UG Street Lts	(49,242)
	E141.017362	365 Nicollet Construction Power	(62,717)
Non-Investment	5144.015440		5.0(0.040
	E144.015449	Southeast Solar Garden Extensions	5,863,042
	E154.010124	Aurora Solar Project NW	519,414
	E147.017010 E142.015445	Solar Garden Extensions	06 675
	E143.015445	Solar Cardon Evt - Mols	40,075 62,565
	F156 001291	Electric New Construction Contributions in Aid	51 626
	F142 001155	Electric New Construction Contributions in Aid	30,243
	E150.001230	Electric New Construction Contributions in Aid	28.337
	E143.001170	Electric New Construction Contributions in Aid	11.254
	E144.001183	Electric New Construction Contributions in Aid	4,438
	E147.001216	Electric New Construction Contributions in Aid	2,481
	E103.016885	Aurora Solar - Business Systems Comm Related	(2)
	E156.016141	Aurora Solar Project WBL	(245)
	E151.001245	Electric New Construction Contributions in Aid	(3,509)
	E114.010645	Clearing WO for CRS credits	(3,992)
	NA	Misc Solar	(15,181)
	E154.001279	Electric New Construction Contributions in Aid	(18,890)
	E150.016123	Aurora Solar Project NPT	(102,871)
	E103.016481	Solar Garden Sub COMM	(132,495)
	E103.010007 E1/2 016122	Solar Garden Communication Line Equip Geronimo Aurora Solar Projects	(137,310) (150,712)
	F144 016140	Aurora Solar Project SE	(411 808)
	F142 015450	NSPM Solar Garden Extensions	(1.163.374)
	E103.016168	Aurora Solar Sub Comm	(1,209,139)
	E156.015451	NSPM Solar Garden Extensions	(1,489,607)
	E150.015447	NSPM Solar Gargen Extensions	(1,853,493)
	E141.001140	Electric New Construction Contributions in Aid	(4,225,196)
	E154.015448	Northwest Solar Garden Extensions	(4,596,081)
	E103.016480	Solar Garden Sub Work	(7,017,039)
Other	F105		
	E103.001041	MN-New Bus Transformer	27,142,933
	NA	Fleet Purchases	9,537,459
	E102 011 405	rous a cyupment-mansportation dianket Install faadar laad manitaring at salastad subs	052,3U3
	F145 012/2/	ND-Dist Sub Communication Equinment	474,221 310 693
	E143.013434	MD-Dist sub communication Equipment	232 431
	E151 001252	St Paul-Elec Tools & Equip	151.061
	E114.018047	MN - Communication Equipment Blanket	136,429
	E141.001133	Mpls-Electric Tools & Equip	129,499
	C115.006786	Logistics-NSPM Tools Blanket	123,632
	E103.018427	COMM MN Feeder Load Monitoring	121,393
	E145.001206	ND-Electric Tools & Equip	85,479
	E103.010660	VAR System Project	83,303
	E103.013567	Install feeder load monitoring at selected subs	83,163
	E103.010365	NSPM General Equipment - Communications	78,865
	E154.001273	Northwest-Elec Tools/Equip	77,181
	E154.003375	Install 35KV transformer at Salida Crossing	52,401
	E103.013585	Substation new RTU and FLM	50,615
	E153.001257	SU-TOOIS & EQUIP	46,U1/
	E142.001149	Willika-Eich Tuuls/Eyulp 2002 Spac Costr - Sm Tool/Equipment Plankat for NSDM	39,024
	L100.002100	2002 Spee onstille Shi Tuon/ Equipment Dianket TUE NOF M	34,731

Mitig	gation		2018
IDP Category Num	nber	Mitigation Name	Expenditures
E144	1.001190	Southeast-Elec Tools & Equip	30,517
E143	3.001164	Edina-Elect Tool/Equip	25,865
C103	3.013336	Tools and Equipment - Locating	21,088
E150	0.001223	Newport-Elec Tool/Equip	17,458
E103	3.014464	Replace Frame Relays in NSPM	13,496
E103	3.014467	Sub Fiber Communication Cutover	8,221
E156	6.001297	White Bear-Electric Tools & Eq	5,050
NA		Scrap Sale Credit Com Gen NSP-	(221)
E103	3.013581	Remote Fault Indication and Load Monitors	(1,360)
E103	3.002099	NSPM Metering Sys-Tools & Equipment Blanket	(1,362)
E103	3.002265	Capitalized Locating Costs-Elec UG MN	(198,310)
E141	.003695	Univ of MN Lease for Ductline/Reimbursement	(248,379)
System Expansion or Upgra	ades for	Reliability and Power Quality	
E114	1.018277	MN - URD Cable Replacement Blanket	19,735,436
E114	1.018180	MN - FPIP Blanket	1,454,793
E114	1.018278	MN - Feeder Cable Replacement Blanket	1,195,085
E114	1.018343	MN - Network Renewal Blanket	898,220
E114	1.018471	MN - Feeder Cable Repl Blanket Proactive	745,732
E114	1.018179	MN - REMS Blanket	490,462
E103	3.001044	NSPM-Poor Performing Fdr Blanket	(3,831)
E103	8.009970	Mainline Cable Replacement - Proactive 2nd Tier - NSPM	(10,615)
E103	3.003453	Tap Cable Replacement 2nd Tier Minnesota	(142,582)
Grid Modernization and Pil	lot Projec	cts	
NA		AGIS	429,193
Grand Total			205,565,102

Docket No. E002/M-19-666 Fresh Energy IR No. 23 Attachment A Page 27 of 35

IDP Category	Mitigation	Mitigation Name	2019 Expenditures
Age-Related Repla	cements and Asset Renewal	Mitigation Name	Experiances
	E114.018129	MN - Pole Replacement Blanket	\$16,187,637
	E114.018176	MN - OH Rebuild Tap/Backbone/Sec Blkt	\$11,018,414
	E114.018275	MN - UG Services Renewal Blanket	\$6,723,445
	E114.005559	MN Major Storm Recovery BlanketMN	\$6,406,731
	E114.017857	MN Elec Mixed Work Adjustment	\$5,014,909
	E114.018274	MN - UG Conversion/Rebuild Blanket	\$4,114,972
	E141.012673	Replace Fifth Street FST Switchgear	\$3,496,946
	E114.018355	MN - UG Street Light Rebuild Blanket	\$2,933,310
	E144.013448	SSI: Add 2nd 23.9kV Transformer and feeder at Waterville	\$2,257,112
	E103.001736	MN Failed Sub Equip Replacement	\$2,255,898
	E150.018891	Replace Linde LND TR1	\$1,008,523
	E141.018795	ELR MPLS Network Protectors	\$1,003,478
	E103.009150	SPCC NSPM Oil Spill Prevention	\$990,666
	E103.019028	Reserve Transformer 70MVA at 115-34.5kV	\$971,677
	E144.019617	Rebuild Sacred Heart SCH211	\$800,001
	E144.018411	Rebuild Clara City CLC221	\$738,489
	E150.019520	Flint Hills Vessel Relocation	\$733,666
	E154.019464	T Rebuild West St Cloud to Millwood	\$700,000
	E151.018796	ELR STP Network Protectors	\$631,458
	E144.017589	Rebuild Yellow Medicine YLM211 & YLM212	\$614,615
	E141.019939	Replace Fifth Street Fire Suppression System	\$550,000
	E103.011890	ELR MN Sub Feeder Breakers	\$513,004
	E114.018354	MN - OH Street Light Rebuild Blanket	\$481,490
	E151.019642	2235 Highland - Duct Rebuild	\$414,870
	E103.016837	MN Failed Sub TR Replacement	\$378,762
	E142.019346	2440 Plymouth Rd OH-UG Conversion	\$359,995
	E103.019030	Reserve Transformer 14MVA at 69-13.2kVA	\$350,603
	E143.019819	France Ave OH-UG	\$314,920
	E103.012586	ELR MN Sub Relays	\$301,464
	E103.012603	ELR MN Sub Regulators	\$298,816
	E103.006458	ELR MN Sub Retirements	\$289,552
	E103.012606	ELR MN Sub Fences	\$270,267
	E141.019578	Update HVAC System in 5th St. Sub	\$225,000
	E151.013639	ELR STP Vault Tops	\$193,123
	E103.017653	ELR MN Sub Batteries	\$180,622
	E141.019522	FST - Replace Lighting System	\$151,340
	E114.018178	MN - OH Services Renewal Blanket	\$137,446
	E103.013521	ELR MN Sub RTUs	\$125,157
	E154.013611	SSI: Convert Echo 4kV to 23.9kV	\$105,973
	E103.011891	ELR MN Sub Switches	\$99,234
	E103.010754	NSM - Pole Trussing	\$89,990

Docket No. E002/M-19-666 Fresh Energy IR No. 23 Attachment A Page 28 of 35

UP Category Mitigation Mitigation Kame Expenditures E103.011423 RCSII Replacement Project - NSPM \$65.402 E151.013595 SSI: Convert St Clark 4VL to 13.8V \$53.517 E144.017360 Chicago-Washington Relocation OH/UG Conv \$11.075 E141.017360 Chicago-Washington Relocation OH/UG Conv \$11.075 E103.009312 SSI: Mit Infrastructure Investment \$7.551 E114.017864 MINNESOT PACUE INSPECTIONS \$3.2966 E103.016671 Purchase reserve transformer 7 MVA 69- 12.5 KV \$3.612 E150.018675 Replace Atton TR2 with System Reserve \$1.239 E114.010766 SSI: Install Waconia TR2 \$1.633 E114.01086 SSI: Install Waconia TR2 \$1.638 NA Maple-Girv On Rebuilds \$641 NA Maple-Girv On Rebuilds \$377 E141.017924 Golden Valley Reserve TR115/13.8 kV 70 MVA \$1.459 RE147.017834 Bass Lake Read OH-UG \$161250 K514.010782 Conversion/Rebuild \$17259 F142.001752 Converston/Rebuild \$17259,789 <th></th> <th></th> <th></th> <th>2019</th>				2019
E 103.011493 MM Mobile IR/Subs Reserve Capacity \$76,368 E 103.011423 RCSI Replacement Project - NSPM \$65,402 E 151.013895 SSI: Convert St Clair 4kV to 13.8kV \$53,517 E 144.018871 PIP090 Interset Polos \$38,101 E 110.017360 Chicago-Washington Relocation OH/UG Corw \$11,075 E 103.009312 SSI: MI Infrastructure Investment \$75,51 E 114.017864 MINNESOTA POLE INSPECTIONS \$3,956 E 103.016671 Purchase reserve transformer 7 MVA 69-12.5 KV \$3,612 E 114.018276 MN - Line Asset Health WCF Blanket \$1,337 E 103.016675 Replace Attor TR2 with System Reserve \$1,455 NA Mpls-Oh Rebuilds \$341 NA Replace 7 OK2 Network Protecto \$395 NA Maple or OK2 Network Varult Blanket \$(\$125,047) E 141.017284 Bass Lake Road OH-UG \$(\$277,121) E 141.017284 Convert load and remove Industrial sub for city \$(\$1,469,055) System Expansion or Upgrades for Capacity \$(\$1,400,055) \$(\$1,400,055) E 141.01722 Convert load and	IDP Category	Mitigation	Mitigation Name	Expenditures
L103.011423 RKJSI Replacement Project - NSPM \$565.02 E151.013995 SSI: Convert SI Clair AlV to 13.8kV \$535.07 E144.018871 PIPOPO Interset Poles \$381.00 E141.017560 Chicago-Washington Relocation OH/UG Conv \$11.075 E1103.009312 SSI: MN Infrastructure Investment \$7.551 E110.017664 MINNEGOTA POLE INSPECTIONS \$3.896 E103.016671 Purchase reserve transformer 7 MVA 69-12.5 KV \$3.612 E150.018675 Replace Atton TR2 with System Reserve \$1.292 E141.018276 MM - Line Sest Health WCF Blanket \$1.638 E142.011006 SSI: Install Waconia TR2 \$1.537 E103.019429 Reserve TR 115/13.8 kV 70 MVA \$1.445 NA Replace 7 CM2 Network Protecto \$395 NA Replace 7 CM2 Network Protecto \$395 NA Replace 7 CM2 Network Vault Blanket \$397.593.839 E141.017359 MPLS UG Network Vault Blanket \$329.699.893 E141.01752 Convert load and remove Industrial sub for city \$31.467.998 E141.017724 Colden Valey Read VI to UG		E103.011959	MN Mobile TR/Subs Reserve Capacity	\$76,368
E151.013595 SSI: Convert St. Clair 44X to 13.84V SS3.517 E144.018871 PIPO90 Intersat Polis SS3.517 E141.017360 Chicago-Washington Relocation OH/UG Conv \$111.075 E103.009312 SSI: MI Infrastructure Investment \$7.551 E114.017364 MINNESOTA POLE INSPECTIONS \$3.966 E103.016671 Purchase reserve transformer 7 MVA 69-12.5 KV \$3.616 E114.018276 MN - Line Asset Health WCF Blanket \$1.638 E114.018276 MN - Line Asset Health WCF Blanket \$1.638 E114.018276 MN - Line Asset Health WCF Blanket \$1.637 E114.018276 MN - Line Asset Health WCF Blanket \$1.638 E142.011006 SSI: Install Waconia TR2 \$1.537 E103.019429 Reserve TR 115/13.8 KV 70 MVA \$1.455 NA Replace 7 /// Cheletio \$395 ST SSI Convert Studies \$37 E147.017834 Bass Lake Road OH-LIG \$(\$29,97,95) E141.017324 Convert Uad Banket \$(\$12,490,955) E141.017924 Convert Uad and renove Industrial sub for city \$(\$14,49		E103.011423	RCSII Replacement Project - NSPM	\$65,402
E144.018871 PIP000 Interset Poles \$38,101 E141.017360 Chicago-Washington Relocation OH/UG Conv \$11,075 E103.009312 SSI: MN Infrastructure Investment \$7,551 E114.017864 MINNESOTA POLE INSPECTIONS \$3,956 E103.016671 Purchase reserve Iransformer 7 MVA 69-12.5 KV \$3,612 E116.0116675 Replace Atton TR2 with System Reserve \$1,727 E114.018276 MN - Line Asset Health WCF Blanket \$1,729 E114.0108276 MN - Line Asset Health WCF Blanket \$1,638 E142.011006 SSI: Install Waconia TR2 \$1,537 E103.019429 Reserve TR 115/13.8 KV 70 MVA \$1,445 NA Maple Gr-VOh Rebuilds \$395 NA Maple Gr-VOh Rebuilds \$317 E141.017359 MPLS UG Network Vault Blanket \$39,839 E141.017324 Golden Valley Read OH to UG \$277,717 E141.017525 Install 32KV transformer at Salida Crossing \$3,747,739 E141.017526 Conversion/Rebuild \$2,969,789 E141.017527 Install 32KV transformer at Salida Crossing \$3,747,739		E151.013595	SSI: Convert St Clair 4kV to 13.8kV	\$53,517
E141.017360 Chicago Washington Relocation OH/UG Conv \$11.075 E103.009312 SSI: MN Infrastructure Investment \$7,551 E114.017864 MINNESOTA POLE INSPECTIONS \$3,966 E103.016671 Purchase reserve transformer 7 MVA 69-12.5 KV \$3,612 E114.017864 MINNESOTA POLE INSPECTIONS \$3,612 E114.017867 Replace Afton TR2 with System Reserve \$1,338 E114.017867 MN - Line Asset Health WCF Blanket \$1,438 E142.011006 SSI: Install Waconia TR2 \$1,337 E103.019429 Reserve TR 115/13.8 kV 70 MVA \$1,455 NA Replace 7 CM2 Network Protecto \$395 NA Replace 7C M2 Network Vault Blanket \$(\$15,069) E141.017359 MPLS UG Network Vault Blanket \$(\$12,647) E141.017924 Coden Valley Read OH to UG \$(\$27,71,71) E142.001156 Mntka-UG Conversion/Rebuild \$(\$27,97,89) E144.017324 Coden Valley Acad OH to UG \$(\$27,97,72) E144.017325 Install 35KV transformer at Salida Crossing \$3,747,739 E144.018344 MN - Network Reinforcement Blanke		E144.018871	PIP090 Interset Poles	\$38,101
E103.009312 SSI: MN Infrastructure Investment \$7.551 E114.017864 MINNESOTA POLE INSPECTIONS \$3.956 E103.016671 Purchase reserve transformer 7 MVA 69- 12.5 KV \$3.612 E114.018276 MN - Line Asset Health WCF Blanket \$1.638 E114.018276 MN - Line Asset Health WCF Blanket \$1.638 E114.018276 MN - Line Asset Health WCF Blanket \$1.638 E142.011006 SSI: Install Waconia TR2 \$1.573 E103.019429 Reserve TR 115/13.8 KV 70 MVA \$1.445 NA Mapis-On Rebuilds \$395 NA Mapis-On Rebuilds \$395 NA Mapis-On Rebuilds \$398 E147.017834 Bass Lake Road OH-UG \$51.068 E141.017329 MPLS UG Network Vault Blanket \$398,989 E151.016697 STP UG Network Vault Blanket \$398,989 E141.017924 Golden Valley Road OH to UG \$277,121 E144.017782 Convert load and remove Industrial sub for city \$3,496,978 E144.017826 Convert Conder and remove Industrial sub for city \$3,496,978		E141.017360	Chicago-Washington Relocation OH/UG Conv	\$11,075
E114.017864 MINNESOTA POLE INSPECTIONS \$3,956 E103.016671 Purchase reserve transformer 7 MVA 69-12.5 KV \$3,612 E114.018276 MN - Line Asset Health WCF Blanket \$1,638 E114.018276 MN - Line Asset Health WCF Blanket \$1,638 E142.011006 SSI: Install Waconia TR2 \$1,537 E103.019429 Reserve TR 115/13.8 KV 70 MVA \$1,445 NA Mgbc Gru-Oh Rebuilds \$641 NA Replace 7 CM2 Network Protecto \$3395 NA Magle Gru-Oh Rebuilds \$347 E147.017834 Bass Lake Road OH-UG \$(\$5,108) E141.017359 MELS US Network Vauit Blanket \$(\$259,758) E142.001156 Mntka-UG Conversion/Rebuild \$(\$259,758) E141.017924 Convert load and remove Industrial sub for city \$(\$1,469,055) System Expansion or Upgrades for Capacity \$(\$1,409,051) \$(\$1,469,055) System Expansion or Upgrades for Capacity \$(\$1,409,051) \$(\$1,409,055) E141.010910 Install 35KV transformer at Saik River \$2,363,307 E141.010834 MV - Network Reinforcement Blanket <td></td> <td>E103.009312</td> <td>SSI: MN Infrastructure Investment</td> <td>\$7,551</td>		E103.009312	SSI: MN Infrastructure Investment	\$7,551
E103.016671 Purchase reserve_transformer 7 MVA 69-12.5 KV \$3,612 E116.0018675 Replace Atton TR2 with System Reserve \$1,729 E114.018276 MI - Line Asset Health WCF Blanket \$1,537 E103.019429 Reserve TR 115/13.8 KV 70 MVA \$1,445 NA Mpis-On Rebuilds \$641 NA Replace 7 MC2 Network Protecto \$395 NA Maple Grv-On Rebuilds \$377 E147.017834 Bass Lake Road OH-UG \$51,939 E141.017359 MPLS UG Network Vault Blanket \$398,939 E151.016697 STP UG Network Vault Blanket \$152,047 E142.001156 Mntka-UG Conversion/Rebuild \$257,758) E141.017292 Golden Valey Road OH to UG \$277,121 E154.003375 Install 35KV transformer at Sailda Crossing \$3,247,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 35KV transformer at Sailda Crossing \$3,140,560 E154.010161 Install 35KV transformer at Sailk River \$2,363,307 E114.018344 MN - Network Reinforcement Blanket \$2,969,		E114.017864	MINNESOTA POLE INSPECTIONS	\$3,956
E150.018675 Replace Afton TR2 with System Reserve \$1,29 E114.018276 MN - Line Asset Health WCF Blanket \$1,638 E142.011006 SSI: Install Waconia TR2 \$1,537 E103.019429 Reserve TR 115/13.8 kV 70 MVA \$1,445 NA Mpls-Oh Rebuilds \$4641 NA Replace 7 CM2 Network Protecto \$395 NA Mapie Grv-Oh Rebuilds \$377 E147.017834 Bass Lake Road OH-UG \$(\$5,108) E141.017359 MPLS UG Network Vauit Blanket \$(\$125,047) E142.001156 Mntka-UG Conversion/Rebuild \$(\$277,121) E142.001156 Mntka-UG Conversion/Rebuild \$(\$277,121) E154.017782 Convert load and remove Industrial sub for city \$(\$1,469,055) System Expansion or Upgrades for Capacity \$1,747,739 \$1,747,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.017728 Reinforce \$1,Codd SCL TR2 \$1,405,981 E144.018376 Install 35KV transformer at Salk River \$2,343,307 E144.018970 Reinforce BitK Tap/Back/Sec \$1,045,981 <td></td> <td>E103.016671</td> <td>Purchase reserve transformer 7 MVA 69- 12.5 KV</td> <td>\$3,612</td>		E103.016671	Purchase reserve transformer 7 MVA 69- 12.5 KV	\$3,612
E114.018276 MN - Line Asset Health WCF Blanket \$1,638 E142.011006 SSI: Install Waconia TR2 \$1,537 E103.019429 Reserve TR 115/13.8 kV 70 MVA \$1,445 NA Mplis-Oh Rebuilds \$641 NA Replace 7 CM2 Network Protecto \$3395 NA Maple Gir-Oh Rebuilds \$347 E147.017834 Bass Lake Road OH-UG \$5108) E141.017359 MES UG Network Vault Blanket \$125047) E142.001156 Mntka-UG Conversion/Rebuild \$2277,121) E14.017357 MISL Ua Network Vault Blanket \$125047) E144.017752 Convert load and remove Industrial sub for city \$14,469,055) System Expansion or Upgrades for Capacity \$2,33,37 \$1,405,981 E141.01735 Install 35KV transformer at Salida Crossing \$2,747,739 E154.003375 Install 35KV transformer at Salida Crossing \$2,33,337 E114.018344 MN - Network Reinforcement Blanket \$2,363,307 E114.018375 Install XBKV transformer at Salida Crossing \$1,705,650 E154.015728 Reinforce SI Cloud SCL TR2 \$1,4		E150.018675	Replace Afton TR2 with System Reserve	\$1,729
E142.011006 SS1: Install Waconia TR2 \$1,537 E103.014429 Reserve TR 115/13.8 kV 70 MVA \$1,445 NA Mpls-Oh Rebuilds \$395 NA Maple Grv-Oh Rebuilds \$377 E147.017834 Bass Lake Road OH-UG \$(51,08) E141.017359 MPLS UG Network Vault Blanket \$(5125,047) E151.016697 STP UG Network Vault Blanket \$(5125,047) E141.017824 Golden Valley Road OH to UG \$(2277,121) E144.001766 Mntka-UG Conversion/Rebuild \$(259,758) System Expansion or Upgrades for Capacity Vertice of the statil statile		E114.018276	MN - Line Asset Health WCF Blanket	\$1,638
E103.019429 Reserve TR 115/13.8 kV 70 MVA \$1,445 NA Mpls-On Rebuilds \$641 NA Replace 7 CM2 Network Protecto \$3395 NA Maple Grv-On Rebuilds \$337 E147.017834 Bass Lake Road OH-UG \$(\$5,108) E141.017359 MPLS UG Network Vault Blanket \$(\$259,758) E141.017924 Golden Valley Road OH to UG \$(\$277,121) E154.010769 TP UG Network Vault Blanket \$(\$1,60,055) System Expansion or Upgrades for Capacity \$(\$1,469,055) \$(\$1,469,055) System Expansion or Upgrades Install 35KV transformer at Salida Crossing \$(\$1,469,055) System Expansion or Upgrades Install 30KV transformer at Salida Crossing \$(\$1,469,055) E154.010161 Install 201 transformer at Salida Crossing \$(\$1,469,056) E154.010161 Install Wilson WIL TR4 & Feeders \$1,065,650		E142.011006	SSI: Install Waconia TR2	\$1,537
NA MpIs-Oh Rebuilds S641 NA Replace 7 CM2 Network Protecto \$395 NA Maple Grv-Oh Rebuilds \$337 E147.017834 Bass Lake Road OH-UG (\$5,108) E147.017834 Bass Lake Road OH-UG (\$5,928) E151.016697 STP UG Network Vault Blanket (\$125.047) E142.001156 Mntka-UG Conversion/Rebuild (\$259,758) E141.017924 Golden Valley Road OH to UG (\$277,121) E154.017782 Colden Valley Road OH to UG (\$277,121) E154.017782 Install 35KV transformer at Sallda Crossing \$3,747,739 System Expansion or Upgrades for Capacity \$2,263,307 \$1,705,650 E154.003375 Install 35KV transformer at Sallda Crossing \$3,747,739 E154.015712 Reinforce St Cloud SCL TR2 \$1,05,650 E154.015710 Install Wison WL TR4 & Feeders \$1,05,650 E154.015728 Reinforce Bit Tap/Back/Sec \$1,403,573 E154.015728 Reinforce Bit Tap/Back/Sec \$1,403,573 E154.015726 Install South Washington ERU Sub \$744,278		E103.019429	Reserve TR 115/13.8 kV 70 MVA	\$1,445
NAReplace 7 CM2 Network Protecto\$3395NAMaple Grv-On Rebuilds\$37E147.017834Bass Lake Road OH-UG(\$5,108)E141.017359MPLS UG Network Vault Blanket(\$125,047)E151.016697STF UG Network Vault Blanket(\$125,047)E142.001156Mntka-UG Conversion/Rebuild(\$259,758)E141.017924Golden Valley Road OH to UG(\$277,121)E154.017782Convert load and remove Industrial sub for citty(\$1,469,055)System Expansion or Upgrades for Capacity\$3,747,739E114.018344MN - Network Reinforcement Blanket\$2,969,789E154.017728Reinforce St Cloud SCL TR2\$1,705,650E154.017528Reinforce St Cloud SCL TR2\$1,405,981E114.018344MN - UG Reinforce Bikt Tap/Back/Sec\$1,194,816E144.01437Add Dundas 072 Feeder\$1,403,989E144.018279MN - UG Reinforce Bikt Tap/Back/Sec\$1,194,816E144.014347Add Dundas 072 Feeder\$940,919E144.018970Reinforce Hedford Junction MDF TR1\$935,737E103.018426SUB MN Feeder Load Monitoring\$852,208E150.012576Install Solth Washington ERU Sub\$744,278E114.018342MN - ONe Reinforce Bikt Tap/Back/Sec\$552,846E114.018181MN - OH Reinforce Bikt Tap/Back/Sec\$552,846E114.018342MN - New Business Network Blanket\$434,013E150.011740Add feeder WBP062\$350,000E151.017618Transfer WES062 load to WES063\$200,000E151.01		NA	Mpls-Oh Rebuilds	\$641
NAMaple Grv-Oh Rebuilds\$37E147.017834Bass Lake Road OH-UG(\$5,108)E141.017359MPLS UG Network Vault Blanket(\$39,839)E151.016697STP UG Network Vault Blanket(\$1250,477)E142.001156Mntka-UG Conversion/Rebuild(\$259,758)E141.017924Golden Valley Road OH to UG(\$277,121)E154.017782Convert load and remove Industrial sub for city(\$1,469,055)System Expansion or Upgrades for Capacity*********************************		NA	Replace 7 CM2 Network Protecto	\$395
E147.017834 Bass Lake Road OH-UG (\$5,108) E141.017359 MPLS UG Network Vault Blanket (\$39,839) E151.016697 STP UG Network Vault Blanket (\$125,047) E142.001156 Mntka-UG Conversion/Rebuild (\$259,758) E141.017924 Golden Valley Road OH to UG (\$277,121) E154.017782 Convert load and remove Industrial sub for city (\$1,469,055) System Expansion or Upgrades for Capacity 52,969,789 53,747,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.00375 Install 35KV transformer at Saluk River \$2,263,307 E141.018344 MN - Network Reinforcement Blanket \$2,263,307 E141.01910 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Bikt Tap/Back/Sec \$1,043,598 E144.01847 Add Dundas 072 Feeder \$940,919 E144.01847 Add Dundas 072 Feeder \$945,737 E150.012576 Install South Washington ERU Sub \$744,278 E114.01814 MN - OH Re		NA	Maple Grv-Oh Rebuilds	\$37
E141.017359 MPLS UG Network Vault Blanket (\$39,839) E151.016697 STP UG Network Vault Blanket (\$125,047) E142.001156 Mntka-UG Conversion/Rebuild (\$259,758) E141.017924 Golden Valley Road OH to UG (\$277,121) E154.017782 Convert load and remove Industrial sub for city (\$1.469,055) System Expansion or Upgrades for Capacity E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 2nd tansformer at Sauk River \$2,363,307 E141.019010 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.0105128 Reinforce St Cloud SCL TR2 \$1,405,981 E144.0140970 MN - UG Reinforce Bikt Tap/Back/Sec \$1,194,816 E147.011058 Plymouth-Area Power Grid Upgrades \$1,043,598 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Bikt Tap/Back/Sec \$552,846 E114.01811 MN - OH Reinforce Bikt Tap/Back/Sec \$552,846 E150.017576		E147.017834	Bass Lake Road OH-UG	(\$5,108)
E151.016697 STP UG Network Vault Blanket (\$125,047) E142.001156 Mntka-UG Conversion/Rebuild (\$259,758) E141.017924 Golden Valley Road OH to UG (\$277,121) E154.017782 Convert load and remove Industrial sub for city (\$1,469,055) System Expansion or Upgrades for Capacity E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 \$3,747,739 E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 E154.010161 Install Ont Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Bikt Tap/Back/Sec \$1,043,598 E144.018279 MN - UG Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E150.012576 Install South Washington ERU Sub \$744,278 E114.018342 MN - New Business Network Blanket \$434,013 E150.012576 Install South Washington ERU Sub \$724,278 E15		E141.017359	MPLS UG Network Vault Blanket	(\$39,839)
E142.001156 Mntka-UG Conversion/Rebuild (\$259,758) E141.017924 Golden Valley Road OH to UG (\$277,121) E154.017782 Convert load and remove Industrial sub for city (\$1,469,055) System Expansion or Upgrades for Capacity E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 2nd tansformer at Sauk River \$2,363,307 E141.010910 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Bikt Tap/Back/Sec \$1,194,816 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E114.01831 MN - OH Reinforce Bikt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.012576 Install South Washington ERU Sub \$744,278 E150.011740 Add feeder WBP062 \$352,246 </td <td></td> <td>E151.016697</td> <td>STP UG Network Vault Blanket</td> <td>(\$125,047)</td>		E151.016697	STP UG Network Vault Blanket	(\$125,047)
E141.017924 Golden Valley Road OH to UG (\$277,121) E154.017782 Convert load and remove Industrial sub for city (\$1,469,055) System Expansion or Upgrades for Capacity \$3,747,739 E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 2nd tansformer at Sauk River \$2,363,307 E141.010910 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Bikt Tap/Back/Sec \$1,194,816 E144.014347 Add Dundas 072 Feeder \$940,919 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E114.01831 MN - OH Reinforce Bikt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Bianket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E151.017618 Tra		E142.001156	Mntka-UG Conversion/Rebuild	(\$259,758)
E154.017782 Convert load and remove Industrial sub for city (\$1,469,055) System Expansion or Upgrades for Capacity E154.003375 Install 35KV transformer at Salida Crossing \$3,747,739 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 2nd tansformer at Salida Kiver \$2,363,307 E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 2nd tansformer at Sauk River \$2,363,307 E114.010910 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Bikt Tap/Rack/Sec \$1,194,816 E147.011058 Piymouth-Area Power Grid Upgrades \$1,043,598 E144.014347 Add Dundas 072 Feeder \$940,919 E144.01347 Add Dundas 072 Feeder \$940,919 E144.01347 Add Dundas 072 Feeder \$940,919 \$1,442,178 \$2,028 E150.012576 Install South Washington ERU Sub \$744,278 \$1,442,788 E114.01811 MN - OH Reinforce Bikt Tap/Back/Sec \$552,846 \$114.018342 \$104.01393 \$352,000 \$352,000 \$3		E141.017924	Golden Valley Road OH to UG	(\$277,121)
System Expansion or Upgrades for CapacityE154.003375Install 35KV transformer at Salida Crossing\$3,747,739E114.018344MN - Network Reinforcement Blanket\$2,969,789E154.010161Install 2nd tansformer at Sauk River\$2,363,307E141.010910Install Wilson WIL TR4 & Feeders\$1,705,650E154.015728Reinforce St Cloud SCL TR2\$1,405,981E114.018279MN - UG Reinforce Blkt Tap/Back/Sec\$1,194,816E147.011058Plymouth-Area Power Grid Upgrades\$1,043,598E144.014347Add Dundas 072 Feeder\$940,919E144.018970Reinforce Medford Junction MDF TR1\$935,737E103.018426SUB MN Feeder Load Monitoring\$852,208E114.01811MN - OH Reinforce Blkt Tap/Back/Sec\$552,846E114.01812MN - New Business Network Blanket\$434,013E156.014539Reinforce Tanners Lake TLK077\$300,000E151.017618Transfer WES062 load to WES063\$200,000E156.01959T Reinforce Red Rock RRK TR2\$115,000E150.01904Install Rosemount RMT TR2 & Feeder\$120,000E150.01904Install Rosemount RMT TR2 & Feeder\$120,000E150.014325Extend ALK064\$62,242E154.014561Remove and Retire Empire Park substation\$60,000		E154.017782	Convert load and remove Industrial sub for city	(\$1,469,055)
E154.003375Install 35KV transformer at Salida Crossing\$3,747,739E114.018344MN - Network Reinforcement Blanket\$2,969,789E154.010161Install 2nd tansformer at Sauk River\$2,363,307E141.010910Install Wilson WIL TR4 & Feeders\$1,705,650E154.015728Reinforce St Cloud SCL TR2\$1,405,981E114.018279MN - UG Reinforce Bikt Tap/Back/Sec\$1,194,816E147.011058Plymouth-Area Power Grid Upgrades\$1,043,598E144.014347Add Dundas 072 Feeder\$940,919E144.018970Reinforce Medford Junction MDF TR1\$935,737E103.018426SUB MN Feeder Load Monitoring\$852,208E150.012576Install South Washington ERU Sub\$744,278E114.018181MN - OH Reinforce Bikt Tap/Back/Sec\$552,846E114.018342MN - New Business Network Blanket\$434,013E150.011740Add feeder WBP062\$335,000E156.014359Reinforce Tanners Lake TLK077\$300,000E156.017629Reinforce RAM071 BCT\$183,488E150.019059T Reinforce RAM071 BCT\$183,488E150.019059T Reinforce RAM071 BCT\$183,488E150.014325Extend ALK064\$62,242E154.014361Remoye and Retire Empire Park substation\$60.000	System Expansion	or Upgrades for Capacity		
E114.018344 MN - Network Reinforcement Blanket \$2,969,789 E154.010161 Install 2nd tansformer at Sauk River \$2,363,307 E141.010910 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Blkt Tap/Back/Sec \$1,194,816 E147.011058 Plymouth-Area Power Grid Upgrades \$1,043,598 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E114.018181 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018181 MN - New Business Network Blanket \$434,013 E150.012576 Install South Washington ERU Sub \$744,278 E114.018181 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E150.019059 T Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.01904 Insta		E154.003375	Install 35KV transformer at Salida Crossing	\$3,747,739
E154.010161 Install 2nd tansformer at Sauk River \$2,363,307 E141.010910 Install Wilson WIL TR4 & Feeders \$1,705,650 E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Blkt Tap/Back/Sec \$1,194,816 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E150.012576 Install South Washington ERU Sub \$744,278 E114.018342 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.012576 Install South WaShington ERU Sub \$744,278 E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RK TR2 \$175,000 E150.019059 T Reinforce Red R		E114.018344	MN - Network Reinforcement Blanket	\$2,969,789
E141.010910Install Wilson WIL TR4 & Feeders\$1,705,650E154.015728Reinforce St Cloud SCL TR2\$1,405,981E114.018279MN - UG Reinforce Bikt Tap/Back/Sec\$1,194,816E147.011058Plymouth-Area Power Grid Upgrades\$1,043,598E144.014347Add Dundas 072 Feeder\$940,919E144.018970Reinforce Medford Junction MDF TR1\$935,737E103.018426SUB MN Feeder Load Monitoring\$852,208E150.012576Install South Washington ERU Sub\$744,278E114.018181MN - OH Reinforce Bikt Tap/Back/Sec\$552,846E114.018342MN - New Business Network Blanket\$434,013E150.011740Add feeder WBP062\$352,000E156.014539Reinforce Tanners Lake TLK077\$300,000E156.017629Reinforce RAM071 BCT\$183,488E150.019059T Reinforce Red Rock RRK TR2\$175,000E150.01904Install Rosemount RMT TR2 & Feeder\$120,000E150.014325Extend ALK064\$62,242E154.014561Remove and Retire Empire Park substation\$60,000		E154.010161	Install 2nd tansformer at Sauk River	\$2,363,307
E154.015728 Reinforce St Cloud SCL TR2 \$1,405,981 E114.018279 MN - UG Reinforce Blkt Tap/Back/Sec \$1,194,816 E147.011058 Plymouth-Area Power Grid Upgrades \$1,043,598 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E150.012576 Install South Washington ERU Sub \$744,278 E114.018181 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.017629 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rck RK TR2 \$175,000 E150.019059 T Reinforce Red Rck RK TR2 \$120,000 E150.019059 T Reinforce Red Rck RK TR2 \$120,000 E150.019054 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,2		E141.010910	Install Wilson WIL TR4 & Feeders	\$1,705,650
E114.018279 MN - UG Reinforce Blkt Tap/Back/Sec \$1,194,816 E147.011058 Plymouth-Area Power Grid Upgrades \$1,043,598 E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E150.012576 Install South Washington ERU Sub \$744,278 E114.018181 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.019059 T Reinforce Red Rock RRK TR2 \$120,000 E150.019054 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154,014561 Remove and Retire Empire Park substation \$60,000		E154.015728	Reinforce St Cloud SCL TR2	\$1,405,981
E147.011058Plymouth-Area Power Grid Upgrades\$1,043,598E144.014347Add Dundas 072 Feeder\$940,919E144.018970Reinforce Medford Junction MDF TR1\$935,737E103.018426SUB MN Feeder Load Monitoring\$852,208E150.012576Install South Washington ERU Sub\$744,278E114.018181MN - OH Reinforce Blkt Tap/Back/Sec\$552,846E114.018342MN - New Business Network Blanket\$434,013E150.011740Add feeder WBP062\$352,000E156.014539Reinforce Tanners Lake TLK077\$300,000E156.017629Reinforce RAM071 BCT\$183,488E150.019059T Reinforce Red Rock RRK TR2\$175,000E150.01904Install Rosemount RMT TR2 & Feeder\$120,000E150.014325Extend ALK064\$62,242E154.014561Remove and Retire Empire Park substation\$60,000		E114.018279	MN - UG Reinforce Blkt Tap/Back/Sec	\$1,194,816
E144.014347 Add Dundas 072 Feeder \$940,919 E144.018970 Reinforce Medford Junction MDF TR1 \$935,737 E103.018426 SUB MN Feeder Load Monitoring \$852,208 E150.012576 Install South Washington ERU Sub \$744,278 E114.018181 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.019059 T Reinforce Red Rock RRK TR2 \$120,000 E150.019054 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E147.011058	Plymouth-Area Power Grid Upgrades	\$1,043,598
E144.018970Reinforce Medford Junction MDF TR1\$935,737E103.018426SUB MN Feeder Load Monitoring\$852,208E150.012576Install South Washington ERU Sub\$744,278E114.018181MN - OH Reinforce Blkt Tap/Back/Sec\$552,846E114.018342MN - New Business Network Blanket\$434,013E150.011740Add feeder WBP062\$352,000E156.014539Reinforce Tanners Lake TLK077\$300,000E151.017618Transfer WES062 load to WES063\$200,000E156.017629Reinforce RAM071 BCT\$183,488E150.019059T Reinforce Red Rock RRK TR2\$175,000E150.01904Install Rosemount RMT TR2 & Feeder\$120,000E150.014325Extend ALK064\$62,242E154.014561Remove and Retire Empire Park substation\$60,000		E144.014347	Add Dundas 072 Feeder	\$940,919
E103.018426SUB MN Feeder Load Monitoring\$852,208E150.012576Install South Washington ERU Sub\$744,278E114.018181MN - OH Reinforce Blkt Tap/Back/Sec\$552,846E114.018342MN - New Business Network Blanket\$434,013E150.011740Add feeder WBP062\$352,000E156.014539Reinforce Tanners Lake TLK077\$300,000E156.017618Transfer WES062 load to WES063\$200,000E156.017629Reinforce RAM071 BCT\$183,488E150.019059T Reinforce Red Rock RRK TR2\$175,000E150.01904Install Rosemount RMT TR2 & Feeder\$120,000E150.014325Extend ALK064\$62,242E154.014561Remoye and Retire Empire Park substation\$60,000		E144.018970	Reinforce Medford Junction MDF TR1	\$935,737
E150.012576 Install South Washington ERU Sub \$744,278 E114.018181 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remoye and Retire Empire Park substation \$60,000		E103.018426	SUB MN Feeder Load Monitoring	\$852,208
E114.018181 MN - OH Reinforce Blkt Tap/Back/Sec \$552,846 E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E150.012576	Install South Washington ERU Sub	\$744,278
E114.018342 MN - New Business Network Blanket \$434,013 E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E114.018181	MN - OH Reinforce Blkt Tap/Back/Sec	\$552,846
E150.011740 Add feeder WBP062 \$352,000 E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E114.018342	MN - New Business Network Blanket	\$434,013
E156.014539 Reinforce Tanners Lake TLK077 \$300,000 E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E150.011740	Add feeder WBP062	\$352,000
E151.017618 Transfer WES062 load to WES063 \$200,000 E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E156.014539	Reinforce Tanners Lake TLK077	\$300,000
E156.017629 Reinforce RAM071 BCT \$183,488 E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E151.017618	Transfer WES062 load to WES063	\$200,000
E150.019059 T Reinforce Red Rock RRK TR2 \$175,000 E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E156.017629	Reinforce RAM071 BCT	\$183,488
E150.010904 Install Rosemount RMT TR2 & Feeder \$120,000 E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E150.019059	T Reinforce Red Rock RRK TR2	\$175,000
E150.014325 Extend ALK064 \$62,242 E154.014561 Remove and Retire Empire Park substation \$60,000		E150.010904	Install Rosemount RMT TR2 & Feeder	\$120,000
E154.014561 Remove and Retire Empire Park substation \$60.000		E150.014325	Extend ALK064	\$62,242
		E154.014561	Remove and Retire Empire Park substation	\$60,000

Docket No. E002/M-19-666 Fresh Energy IR No. 23 Attachment A Page 29 of 35

IDP Category	Mitigation	Mitigation Name	2019 Expenditures
The category	E141.014694	U of M CHP Express Feeders	\$9.912
	E103.001735	MN-Sub Capacity Reinforcement	\$8,128
	E142.013447	Install new sub Lake Bavaria	\$5,177
	E150.019265	Upgrade Capacity CHE62/72 for 3M	\$1,480
	E142.011017	Reinforce GSL65 feeder ties	\$1,166
	E143.016728	Reinforce HYL feeder exits	\$723
	E141.016992	CABLE DUCT Millwright Bldg 321 5th	(\$183)
	NA	Mpls- New Ug Network	(\$226)
	E154.013633	SSI: Convert Hector 4kV to 13.8kV	(\$1,766)
	E141.001143	Mpls-UG Reinforcement	(\$2,026)
	E141.018733	Reinforce Daytons Vault 3	(\$12,935)
	E151.019521	United Hospital SG Replacement	(\$26,798)
	E142.016725	Reinforce GNL072 feeder capacity	(\$29,837)
	E147.016782	Extend IDA064 Feeder	(\$34,450)
	E114.013397	Substation Land - MN	(\$41,780)
	E156.002804	Inst BYT#2 28 MVA	(\$43,556)
	E154.018812	Atwater Replace ATW062 Breaker	(\$168,562)
	E143.018586	Health Partners ATO 8170 33RD AVE S	(\$544,608)
Projects related to L	Local (or other) Governm	nent-Requirements	
	E141.018906	8th Street Relocation Hennepin to Chicago	\$8,128,273
	E114.018271	MN - UG Reloc Tap/Backbone/Sec Blkt	\$7,384,515
	E114.018173	MN - OH Reloc Tap/Backbone/Sec Blkt	\$6,932,293
	E141.019412	Relocation Hennepin Ave Road Project	\$3,423,108
	E141.019192	Relocation MPLS SWLRT Road Project	\$1,145,076
	E142.019440	Hwy 101 Bridge Relocation	\$929,122
	E150.018807	Hwy 95 Reconstruction (Manning)	\$899,347
	E156.019826	Rice St & 694 Roundabout Recon	\$810,706
	E150.019563	Oakdale and Marie Trl Relocation	\$565,559
	E150.019641	County Road 8-Wentworth Ave	\$547,507
	E114.018273	MN - UG Service Conversion Blanket	\$535,333
	E114.018479	MN - Pole Transfer 3rd Party Blanket	\$507,573
	E144.019772	Madison Ave & Haefner Dr Relocation	\$417,912
	E150.019616	Dakota County Hwy 50 Relocation	\$330,022
	E154.018868	SCL 33rd South Improvements	\$289,921
	E141.019422	Relocation Hennepin Ave Road Project	\$134,999
	E150.019919	Wescott Relocation	\$74,000
	E141.019319	Relocation 4th Street Road Project	\$73,262
	E143.013574	Relocation EDINA SWLRT Road Project	\$57,369
	E141.019410	COMP Relocation MPLS SWLRT Road Project	\$52,645
	E143.019409	COMP Relocation EDINA SWLRT Road Project	\$46,112
	E151.018808	McKnight Ave OH Feeder Relocation	\$20,788
	E154.016854	2nd St N UG Relocation Project	\$19,656
	E142.018619	Co Rd 30 Road Move	\$19,085

Docket No. E002/M-19-666 Fresh Energy IR No. 23 Attachment A Page 30 of 35

			2019
IDP Category		Mitigation Name	Expenditures
	E154.019018	Sartel Pinecone Road Elec Reloc	\$4,497
	E142.018982	St Croix Diver Dridge	\$3,900
	NA	St Croix River Bridge	\$1,142
	E141.015301	Douglas Dr OH-UG Conversion	\$640
	E143.016745	Normandale Blvd - Relocate UG facil	\$299
	E103.011368	NSPM facility transfers from 3rd Party Owned Poles	(\$5,800)
	E142.018744	MTK-Woodhill Road-OH to UG	(\$15,343)
	E143.019345	Relocation Hwy 35 106th St to Cliff Rd	(\$164,900)
	E143.019229	Hopkins OH-UG 325 Blake Road N	(\$292,834)
	E143.017843	CSAH 53 OH to UG	(\$331,212)
B.d.o. to a miss or	E141.017519	35W Relocation 40th to Franklin	(\$1,266,448)
IDP Metering	F103 001040	MN-Electric Meter Blanket	\$6 705 021
New Customer Pro	jects and New Revenue		\$6,766,621
	E114.018268	MN - UG Extension Blanket	\$20,372,262
	E114.018269	MN - UG New Services Blanket	\$6,890,975
	E114.015600	MN LED Streetlight Program	\$3,566,878
	E114.018171	MN - OH Extension Blanket	\$2,902,571
	E114.018172	MN - OH New Services Blanket	\$690,152
	E114.018045	MN - OH New Street Light Blanket	\$399,026
	E114.018046	MN - UG New Street Light Blanket	\$129,222
	NA	Mpls-OH Extension	\$12,068
	E141.001138	Mpls-New OH Street Lights	\$11,913
	E142.019281	Woodland Cove JT Extension	\$5,727
	NA	Mpls-New UG Extension	\$5,722
	E147.019271	Takeda UG Extension and ATO	\$3,418
	E141.001135	Mpls-OH Services	\$2,506
	NA	Maple Grv- Elec Ug Extension	\$64
	E141.001139	Mpls-New UG Street Lights	(\$121)
	E141.001131	Mpls-New UG Extension	(\$1,182)
	NA	Southeast-Ug Services	(\$4,459)
	E141.001136	Mpls-New UG Services	(\$5,941)
	E114.018792	MN LED Post Top Conversion	(\$150,402)
Non-Investment			
	E144.015449	SE Solar Garden Extensions - E	\$4,875,487
	E154.016124	Extend facilities to serve NW	\$410,727
	E103.016481	MN-Solar Garden Sub Comm	\$166,670
	E142.015450	Solar Garden Ext - Shorewood	\$123,448
	E143.015445	Solar Garden Ext - Edina	\$33,886
	E144.016140	Aurora Solar Project SE	\$24,025
	E103.016168	Aurora Solar Sub Reinforcement	(\$6,830)
	E141.016062	Solar Garden Ext - MPLS	(\$47,699)
	E103.016480	MN-Solar Garden Sub Work	(\$301,772)
	E147.017018	Solar Garden Ext - Maple Grove	(\$373,096)

IDP Category	Mitigation	Mitigation Name	2019 Expenditures
TDF Category	F103 016887	Solar Gardens Communications - CSG	(\$492 110)
	F156.015451	Solar Garden Ext - WBI	(\$1.341.847)
	E150.015447	Solar Garden Ext Newport - Ext	(\$1,619,282)
	F154.015448	Northwest Solar Gardens Ext	(\$1,995,134)
	F141.001140	Electric New Construction Contributions in Aid	(\$4.377.979)
Other			(+ + +
	E103.001041	MN-New Bus Transformer	\$18,373,346
	NA	Fleet Purchases	\$5,847,873
	E103.002100	2002 Spec Cnstr - Sm Tool/Equipment Blanket for NSPM	\$872,092
	E103.002265	Capitalized Locating Costs-Elec UG MN	\$451,142
	NA	NSPM Week4 SES Accrual	\$412,000
	E103.018427	COMM MN Feeder Load Monitoring	\$392,308
	E103.001738	MN Subs tools & equip	\$233,309
	E153.001257	SD-Tools & Equip	\$76,707
	C115.006786	Logistics-NSPM Tools Blanket	\$73,590
	E145.013434	ND-Dist Sub Communication Equipment	\$73,077
	E103.011405	Install feeder load monitoring at selected subs	\$59,140
	E145.001206	ND-Electric Tools & Equip	\$48,678
	E103.010660	VAR System Project	\$35,047
	E144.013448	SSI: Add 2nd 23.9kV Transformer and feeder at Waterville	\$34,822
	E103.002099	NSPM Metering Sys-Tools & Equipment Blanket	\$34,822
	C103.002113	Tools & Equipment-Transportation Blanket	\$34,462
	E114.018047	MN - Communication Equipment Blanket	\$27,061
	E103.010365	NSPM General Equipment - Communications	\$3,340
	E145.019571	ND Office Furniture and Equipment	\$3,025
	E103.014467	Sub Fiber Communication Cutover	\$2,134
	NA	Frame Relay Replacement - SD	\$903
	E103.014464	Frame Relay Replacement - NSPM	\$15
	NA	NSPM- MN Comm Equip - Dist Lin	(\$18)
	NA	Scrap Sale Credit Com Gen NSP-	(\$31)
	NA	NSPM - SD Comm Equip - Dist Li	(\$2,915)
	NA	SD-Dist Fleet New Unit Purchase El Ops	(\$8,231)
	E141.003695	Scrap Sale Credits-MN	(\$135,336)
	E103.003619	MN-Dist Transportation Blanket Elec	(\$238,641)
System Expansion	or Upgrades for Reliability	y and Power Quality	++= 0=0 0=4
	E114.018277	MN - URD Cable Replacement Blanket	\$15,372,251
	E114.018471	MN - Feeder Cable Repl Blanket	\$2,623,246
	E114.018180		\$1,205,062
	E114.018179	MN - REMS Blanket	\$404,205
	E144.020026	Porcelain Cutout Replacement	\$100,000
	E114.018343	MN - Network Renewal Blanket	\$55,430
Grid Modernization	E103.003453	NSPM-Accelerated URD Cable Rep	(\$646)
	E114.020058	MN Electric Vehicle Program	\$812,000

IDP Category	Mitigation	Mitigation Name	2019 Expenditures
	NA	AGIS	\$3,757,031
Grand Total			210,912,522

IDP Category	Mitigation	Mitigation Name	2020	2021	2022	2023	2024
Grid Moderniz	ation and Pilot Project	s					
	NA	AGIS	\$10,350,543	\$41,211,082	\$131,903,272	\$140,519,221	\$61,990,821
	E114.020058	MN Electric Vehicle Program	\$9,528,000	\$8,082,000	\$9,815,000	\$11,862,000	\$14,759,000
Age-Related R	eplacements and Asse	t Renewal					
	E114.017857	MN Elec Mixed Work Adjustment	\$9,099,917	\$11,829,996	\$11,829,996	\$11,829,996	\$11,829,996
	E114.018176	MN - OH Rebuild Tap/Backbone/Sec Blkt	\$9,912,000	\$10,142,000	\$10,377,000	\$10,618,003	\$10,864,003
	E114.018178	MN - OH Services Renewal Blanket	\$103,000	\$105,003	\$107,000	\$109,000	\$112,000
	E114.018354	MN - OH Street Light Rebuild Blanket	\$822,000	\$844,000	\$865,000	\$888,000	\$888,000
	E114.018274	MN - UG Conversion/Rebuild Blanket	\$6,758,000	\$6,915,009	\$7,075,009	\$7,239,009	\$7,407,009
	E114.018275	MN - UG Services Renewal Blanket	\$2,903,009	\$2,970,002	\$3,039,009	\$3,110,002	\$3,182,000
	E114.018355	MN - UG Street Light Rebuild Blanket	\$788,000	\$809,002	\$830,000	\$852,000	\$852,000
	E141.017359	MPLS UG Network Vault Blanket	\$492,000	\$504,000	\$516,000	\$516,000	\$516,000
	E151.016697	STP UG Network Vault Blanket	\$244,000	\$250,004	\$256,000	\$256,000	\$256,000
	E103.001736	MN Failed Sub Equip Replacement	\$2,300,000	\$2,300,000	\$2,300,000	\$2,300,000	\$2,300,000
	E103.016837	MN Failed Sub TR Replacement	\$800,000	\$1,600,000	\$1,600,000	\$1,600,000	\$1,600,000
	E103.019429	Reserve TR 115/13.8 kV 70 MVA	\$552,000				
	E103.013577	Reserve TR 115/34.5 kV 70 MVA	\$800,000				
	E103.012618	Reserve TR 69/13.8 kV 28 MVA			\$550,000		
	E103.017653	ELR MN Sub Batteries	\$54,000	\$306,000	\$180,000	\$180,000	\$180,000
	E103.011890	ELR MN Sub Feeder Breakers	\$449,998	\$2,550,000	\$1,500,000	\$1,500,000	\$1,500,000
	E103.012606	ELR MN Sub Fences	\$75,008	\$425,008	\$250,000	\$250,000	\$250,000
	E103.012603	ELR MN Sub Regulators	\$60,000	\$340,000	\$200,000	\$200,000	\$200,000
	E103.012586	ELR MN Sub Relays	\$90,000	\$510,000	\$300,000	\$300,000	\$300,000
	E103.006458	ELR MN Sub Retirements	\$60,000	\$340,000	\$200,000	\$200,000	\$200,000
	E103.013521	ELR MN Sub RTUs	\$31,340	\$177,594	\$104,467	\$104,467	\$104,467
	E103.011891	ELR MN Sub Switches	\$30,000	\$170,000	\$100,000	\$100,000	\$100,000
	E103.012612	ELR MN Sub TRs			\$2,000,004	\$2,000,004	\$2,000,004
	E141.018795	ELR MPLS Network Protectors	\$250,004	\$750,004	\$1,000,000	\$1,000,000	\$1,000,000
	E141.001664	ELR MPLS Vault Tops		\$1,000,000	\$500,000	\$1,000,000	\$1,000,000
	E151.018796	ELR STP Network Protectors	\$250,004	\$750,004	\$1,000,000	\$1,000,000	\$1,000,000
	E151.013639	ELR STP Vault Tops	\$799,999	\$700,006	\$500,002	\$1,000,000	\$1,000,000
	E114.018129	MN - Pole Replacement Blanket	\$28,900,000	\$17,700,000	\$17,700,000	\$17,700,000	\$17,700,000
	E103.009150	SPCC NSPM Oil Spill Prevention	\$700,000				
	E144.013600	Convert Butterfield BTF 4kV			\$100,000	\$2,700,000	
	E144.013622	Convert Lafayette LAF 4kV				\$100,000	\$1,950,000
	E144.018411	Rebuild Clara City CLC221	\$800,001	\$599,999			
	E144.019617	Rebuild Sacred Heart SCH211	\$1,400,000				
	E144.017589	Rebuild Yellow Medicine YLM211 & YLM212	\$1,450,000	\$1,450,000	\$1,400,000		
	E141.017906	Replace Fifth Street FST Network RTU	\$200,000				
	E141.012673	Replace Fifth Street FST Switchgear	\$2,470,001				
	E150.018891	Replace Linde LND TR1	\$1,100,000				
	E154.019464	T Rebuild West St Cloud to Millwood	\$1,500,000	\$2,500,000	\$900,000		
	E114.018276	MN - Line Asset Health WCF Blanket	\$11,000,000	\$11,000,000	\$11,000,000	\$11,000,000	\$12,700,000
System Expan	sion or Upgrades for C	apacity					
	E114.018342	MN - New Business Network Blanket	\$1,282,000	\$1,313,000	\$1,345,001	\$1,345,001	\$1,345,001
	E114.018181	MN - OH Reinforce Blkt Tap/Back/Sec	\$883,002	\$883,002	\$883,002	\$883,002	\$883,002
	E114.018279	MN - UG Reinforce Blkt Tap/Back/Sec	\$460,000	\$460,000	\$460,000	\$460,000	\$460,000
	E103.001735	MN-Sub Capacity Reinforcement	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000
	E103.018426	SUB MN Feeder Load Monitoring	\$880,000	\$2,020,000	\$2,500,000	\$2,500,000	\$3,750,000
	E147.011058	Plymouth-Area Power Grid Upgrades	\$8,000,000	\$7,900,000			
	E150.019059	I Reinforce Red Rock RRK IR2	\$670,003				
	E150.019885	Install Jamaica JAM Area Sub	\$2,800,000				
	E144.018970	Reinforce Medford Junction MDF TR1	\$1,700,000				
	E147.019893	Install Switch Coon Creek CNC073	\$30,000				
	E144.007793	Reinforce Fair Park FAP TRT & Fdr	\$1,300,000				
	E143.016730	Install Feeder Tie Wilson WIL081	\$300,000				
	E14/.01//41	Reinforce Usseo USS062	\$200,000				
	E 150.018967		\$100,000				
	E144.01/63/	Load Transfer ESW062 to SMT061	\$100,000				
	E141.01//39	Extend Main Street MS10/4	\$300,000				
	E 143.016724	Reinforce Westgate WSG Feeders	\$550,000				
	E141.019911	Reiniorce Medicine Lake MELU/4	\$500,000				
	E141.019924	Install Hiawatha west HWW Feeder	\$1,200,000				

100.0.1	Mitigation	Mitigation Namo	2020	2021	2022	2022	2024
IDP Category	F141 010020	Install Midtours MDT Fooder	2020	£1.000.000	2022	2023	2024
	E141.019929			\$1,900,000			
	E141.019957	Extend Saint Louis Park SLP085	\$150,000				
	E147.015637	Install Feeder Tie Osseo OSS063	\$100,000				
	E150.019910	Load Transfer CGR062 to CGR071	\$950,000				
	E141.010910	Install Wilson WIL TR4 & Feeders	\$6,850,000	\$7,950,000			
	E143.019055	Reinforce Savage SAV063 & SAV067	\$1,100,004				
	E156.010177	Install Kohlman Lake KOL Feeder	\$1,000,000	\$600,000			
	E150.010914	Install Stockyards STY TR3 & Feeders		\$4,000,000	\$3,500,000		
	E156.015749	Install Baytown BYT Feeders		\$2,100,000	\$2,100,000		
	E154.016772	Install Fiesta City FIC Feeder		\$1,000,000			
	E141.019930	Install Feeder Tie SOU083 to MDT074		\$100,000			
	E141.019954	Reinforce Saint Louis Park SLP087		\$150,000			
	E141.019928	Extend Saint Louis Park SLP092		\$600,000			
	E154.018960	Reinforce Glenwood GLD Sub Equip		\$700,000			
	E144.002712	Install Goodview GVW Feeder		\$1,100,000			
	E150.015662	Install Chemolite CHE065 Feeder		\$1,440,000			
	E156.011061	Install Wyoming WYO Feeder		\$2,500,000			
	E143.016727	Install Feeder Tie EBL064		\$150,000			
	E147.019056	Reinforce Basset Creek BCR062		\$250,000			
	E141.019958	Reinforce Moore Lake MOL071		\$550.000			
	E151.012409	Install Western WES TR3 & Feeders		\$100,000	\$5,300,000		
	F144.013436	Reinforce Kasson KAN TR1 & Feeders			\$2.850.002		
	F147.012463	Install Feeder Tie Crooked Lake CRI 033			\$1,250,000		
	E154 010157	Install Albany ALB TR		\$100.000	\$2,800,000		
	E141 019956	Painforce Terminal TEP073		\$100,000	\$1 100 000		
	E150 012576	Install South Washington EPU Sub	\$5,670,002		\$1,100,000		
	E130.012370	Poinforce Veseli VES TP1 & Feeder	\$5,070,002	\$100.000	\$2,650,004		
	E144.018971	Evtend Terminal TEP064		\$100,000	\$2,050,004	\$150,000	
	E141.019933	Deinforce Durneide DUD TD2			¢100.000	\$150,000	
	E144.010920	Reinforce Edina EDA062			\$100,000	\$2,600,000	
	E143.019034	Reinforce Editia EDA062				\$300,000	
	E147.014465				****	\$200,000	
	E144.000793	Install Zumbrota ZUM TR & Feeder			\$100,000	\$2,950,002	
	E144.016592	Reinforce Sibley Park SIP Sub Equip				\$100,000	
	E143.017702	Install Viking VKG Feeder				\$2,500,000	
	E150.010904	Install Rosemount RMT TR2 & Feeder	\$4,400,008				
	E142.011721	Install Orono ORO TR2 & Feeder			\$100,000	\$4,000,000	
	E156.007927	Install Goose Lake GLK TR3 & Feeders				\$700,000	\$4,000,000
	E144.008708	Install Cannon Falls Trans CTF TR2 & Fdr				\$100,000	\$1,895,003
	E147.013379	Install West Coon Rapids WCR TR			\$99,996	\$1,979,996	
	E156.011752	Install Lindstrom LIN Feeder					\$650,008
	E143.019908	Install Hyland Lake HYL TR3 & Feeder				\$100,000	\$4,600,000
	E156.011764	Reinforce Tanners Lake TLK Sub Equip					\$200,000
	E156.015811	Reinforce Oakdale OAD073 & OAD075					\$275,004
	E151.018961	New MPK075-GPH061 Feeder Tie					\$250,002
	E144.013520	Install East Winona EWI TR2 & Feeder				\$100,000	\$3,100,000
	E153.010999	Install Louise LOU TR2 & Feeders			\$100,000	\$3,480,000	
	E141.009146	Install Hiawatha West HWW TR2	\$1,400,000				
	E154.015728	Reinforce St Cloud SCL TR2	\$1,400,002				
	E141.009145	Install Midtown MDT TR2				\$100,000	\$1,400,000
	E103.006881	Dist Subs Carryover-NSPM		\$1,500,000	\$3,999,996	\$5,100,000	\$9,999,996
	E114.018281	MN - Line Capacity WCF Blanket		\$500,000	\$1,000,000	\$3,000,000	\$4,999,992
Projects relate	d to Local (or other) G	overnment-Requirements					
	E114.018173	MN - OH Reloc Tap/Backbone/Sec Blkt	\$8,468,000	\$8,468,000	\$8,468,000	\$8,468,000	\$8,468,000
	E114.018271	MN - UG Reloc Tap/Backbone/Sec Blkt	\$5,408,000	\$5,408,000	\$5,408,000	\$5,408,000	\$5,408,000
	E114.018273	MN - UG Service Conversion Blanket	\$649,009	\$649,009	\$649,009	\$649,009	\$649,009
	E114.018479	MN - Pole Transfer 3rd Party Blanket	\$500,000	\$500,000	\$500,000	\$500,000	\$500,000
	E143.019409	COMP Relocation EDINA SWLRT Road Project	(\$457,997)	(\$582,993)	(\$462,998)		
	E141.019410	COMP Relocation MPLS SWLRT Road Project	(\$458,008)	(\$582,991)	(\$463,007)		
	E141.018907	Relocation 4th Street Road Project	\$249,999	\$300,001			
	E141.019319	Relocation 4th Street Road Project	\$3.577.000	\$3,795.000			
	E143.013574	Relocation EDINA SWLRT Road Project	\$908.002	\$908.002	\$259.998		
	E141.019412	Relocation Hennepin Ave Road Project (LINFS)	\$3,033.000	\$2,983.000	\$1,061.000		
	E141.019422	Relocation Hennepin Ave Road Project (VALILTS)	\$615,000	. ,			
			\$0.0,000				

IDP Category	Mitigation	Mitigation Name	2020	2021	2022	2023	2024
	E143.019345	Relocation Hwy 35 106th St to Cliff Rd		(\$250,002)			
	E141.019192	Relocation MPLS SWLRT Road Project	\$908,000	\$908,000	\$260,000		
	E114.018175	MN - Mandate WCF Blanket	\$3,400,001	\$4,345,999	\$3,653,000	\$3,933,000	\$4,217,001
	E141.017929	MPLS Mandates WCF	\$2,075,006	\$2,597,000	\$9,142,000	\$10,000,000	\$10,000,000
Metering							
	E103.001040	MN-Electric Meter Blanket	\$5,484,000	\$4,290,000	\$3,454,000	\$2,338,000	\$2,338,000
New Custome	r Projects and New	v Revenue					
	E114.018171	MN - OH Extension Blanket	\$3,290,000	\$3,651,000	\$3,651,000	\$3,651,000	\$3,651,000
	E114.018172	MN - OH New Services Blanket	\$2,511,000	\$2,788,000	\$2,788,000	\$2,788,000	\$2,788,000
	E114.018045	MN - OH New Street Light Blanket	\$352,000	\$362,000	\$371,000	\$380,000	\$380,000
	E114.018268	MN - UG Extension Blanket	\$19,387,000	\$21,499,000	\$21,499,000	\$21,499,000	\$21,499,000
	E114.018269	MN - UG New Services Blanket	\$8,330,000	\$9,247,000	\$9,247,000	\$9,247,000	\$9,247,000
	E114.018046	MN - UG New Street Light Blanket	\$728,000	\$747,000	\$767,000	\$787,000	\$787,000
	E114.018792	MN LED Post Top Conversion	\$1,000,000	\$1,000,000	\$1,000,000	\$1,000,000	\$1,000,000
Non-Investme	ent						
	E141.001140	Electric New Construction Contributions in Aid	(\$3,733,000)	(\$3,702,000)	(\$3,813,000)	(\$3,813,000)	(\$3,813,000)
Other							
	E103.002100	2002 Spec Cnstr - Sm Tool/Equipment Blanket for NSPM	\$789,595	\$1,169,167	\$1,169,167	\$1,169,167	\$1,169,167
	E103.002265	Capitalized Locating Costs-Elec UG MN	\$400,000	\$400,000	\$400,000	\$400,000	\$400,000
	C115.006786	Logistics-NSPM Tools Blanket	\$167,359	\$247,850	\$252,632	\$252,632	\$252,632
	E153.011934	Logistics-NSPM Tools Blanket - SD	\$3,482	\$4,353	\$4,353	\$4,353	\$4,353
	E103.001738	MN Subs tools & equip	\$233,309	\$501,441	\$501,441	\$501,441	\$501,441
	E103.001041	MN-New Bus Transformer	\$21,537,000	\$23,114,000	\$22,104,000	\$22,774,000	\$23,431,000
	E145.001206	ND-Electric Tools & Equip	\$53,105	\$70,518	\$70,518	\$70,518	\$70,518
	E103.002099	NSPM Metering Sys-Tools & Equipment Blanket	\$34,822	\$69,645	\$69,645	\$69,645	\$69,645
	E153.001257	SD-Tools & Equip	\$76,609	\$101,855	\$101,855	\$101,855	\$101,855
	C103.002113	Tools & Equipment-Transportation Blanket	\$30,284	\$90,055	\$90,055	\$90,055	\$90,055
	NA	Fleet Purchases	\$9,637,809	\$12,797,349	\$17,093,422	\$9,095,459	\$7,701,612
	E103.018427	COMM MN Feeder Load Monitoring	\$348,223	\$696,445	\$870,557	\$870,557	\$1,305,835
	E114.018553	AGIS - Planning and Forecasting Tool - MN	\$4,000,000				
	E150.012576	Install South Washington ERU Sub	\$87,056				
	E103.014467	Sub Fiber Communication Cutover	\$435,278	\$435,278	\$435,278		
	E144.019891	T Revenue Metering Mapleton	\$215,898				
	E144.019892	T Revenue Metering Minnesota Lake	\$205,451				
System Expan	sion or Upgrades f	or Reliability and Power Quality					
	E114.018471	MN - Feeder Cable Repl Blanket	\$5,000,000	\$5,000,000	\$5,000,000	\$5,000,000	\$5,000,000
	E114.018180	MN - FPIP Blanket	\$600,000	\$1,400,000	\$1,500,000	\$1,500,000	\$1,500,000
	E114.018179	MN - REMS Blanket	\$510,000	\$1,190,000	\$850,000	\$850,000	\$850,000
	E114.018277	MN - URD Cable Replacement Blanket	\$15,400,000	\$26,100,000	\$22,000,000	\$22,000,000	\$22,000,000
	E114.019275	MN Incremental System Investment		\$80,999,901	\$88,000,000	\$87,999,933	\$87,999,944
Grand Total			\$277.487.137	\$392.612.596	\$480,287,683	\$484.566.325	\$415.216.373

	Information Request No.	25
E002/M-19-666		
Fresh Energy		
Isabel Ricker		
January 13, 2020		
	E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020	Information Request No. E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment H, p. 19.

Request:

Please explain the approach the Company used to scale historical 2018 peak days to 2022 forecast peak values.

Response:

The process we use to scale historical peak days to forecast peak values begins with extracting hourly SCADA data within the historical peak day timeframe. We take the ratio of the forecasted peak value to the peak hour within the SCADA data and assume that the general load curve for the historical peak day will also scale in the same proportion. We complete the process by scaling up all hours of the historical SCADA data to make the historical load curve shape reflect the forecasted peak.

Preparer:	Paul Vaynshenk
Title:	Distribution Planning Engineer
Department:	Distribution System Planning
Telephone:	763.493.1683
Date:	January 23, 2020

Xcel Energy		Information Request No.	26
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

<u>Reference:</u> Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment K.

Request:

For each planning area, please provide the actual 2019 sums of feeder and bank demand and compare with the forecasted 2019 values shown in the Attachment.

Response:

Attachment K is the planning area load growth charts that are part of our system planning process. We provide the requested information as Attachment A to this response.

We note that each of the planning regions represented in Attachment K to our 2019 IDP consist of many substations, transformers, and feeders that are forecasted individually based on a variety of factors including: known load changes, physical feeder and load reconfigurations, historical peak events, and weather impacts. Due to these factors, and in an effort to ensure system reliability and adequate capacity for our customers, our forecasted demands tend to be on the conservative side. The actual peak values are a result of real weather and economic impacts. If those variables were to reoccur in future periods, it is reasonable to expect that they would produce similar values, barring any known changes.

Finally, we note that there are eight substations that are part of the Sioux Falls, South Dakota planning area that are geographically located within Minnesota. In responding to this Information Request, we realized they were not included in Attachment K to our November 1, 2019 IDP. We have included the requested information for the Sioux Falls-MN Planning Region in this response, and will additionally include an update in our Reply Comments in the IDP docket.

Preparer:	Kody Kamunen
Title:	Distribution Engineer
Department:	System Planning and Strategy
Telephone:	763.493.1579
Date:	January 23, 2020

Docket No. E002/M-19-666 Fresh Energy IR No. 26 Attachment A Page 1 of 1

	Maple Grove				
Year	Feeders	Bank	Feeders	Bank	
2019 - Forecast	794304	752433	908695	784007	
2019 - Actual	733812	684524	803183	691677	
Percent Difference	-7.6%	-9.0%	-11.6%	-11.8%	
		,.			
	Edi	ina	Minne	apolis	
Year	Feeders	Bank	Feeders	Bank	
2019 - Forecast	1103081	951552	1882355	1557924	
2019 - Actual	972599	826294	1719655	1469697	
Percent Difference	-11.8%	-13.2%	-8.6%	-5.7%	
	New	port	St F	Paul	
Year	Feeders	Bank	Feeders	Bank	
2019 - Forecast	1083849	962764	842741	713671	
2019 - Actual	1030280	912284	784972	665870	
Percent Difference	-4.9%	-5.2%	-6.9%	-6.7%	
	White B	ar Lako	Minne	tonka	
Voor	Foodors	Bank	Ecodore	Bank	
2010 Earoaast	002720	Dalik	167402	Dalik 407070	
	903720	707000	407402	421912	
2019 - Actual Porcont Difforence	0 7%	0.20/	440233	407403	
	-9.7 /0	-9.270	-4.1/0	-4.0 /0	
	Keys	tone	Hiawatha		
Year	Feeders	Bank	Feeders	Bank	
2019 - Forecast	635943	583055	240619	218854	
2019 - Actual	592299	535610	230766	199841	
Percent Difference	-6.9%	-8.1%	-4.1%	-8.7%	
N N	Sioux Fa	alls - MN			
Year	Feeders	Bank			
2019 - Forecast	45750	40673			

41048

0.9%

42783

-6.5%

2019 - Actual

Percent Difference

	Information Request No.	27
E002/M-19-666		
Fresh Energy		
Isabel Ricker		
January 13, 2020		
	E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020	Information Request No. E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020

Question:

Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M1.

Request:

Please explain the inconsistency between the \$524 million AGIS capital cost at p. 20 of 301, line 23, and the sum of values at p. 21 of 301, line 11 totaling \$581.9 million.

Response:

The difference between the two sums is the level of presentation. The \$524 million stated on page 20 of 301 is representative of the capital expenditures specific to the State of Minnesota electric jurisdiction. The \$581.9 million presented in Table 2 on page 21 of 301 is representative of capital expenditures for the Electric portion of the NSP Minnesota operating company, which also includes the North Dakota and South Dakota electric operations.

Preparer:	Nick Paidosh
Title:	Principal Rate Analyst
Department:	Regulatory Affairs
Telephone:	612-342-9034
Date:	January 23, 2020

Xcel Energy		Information Request No.	28
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M1, p. 90 of 301.

Request:

Please provide the customer energy savings and peak demand reduction percentages achieved by the SVC implementation in Xcel Energy's Colorado service territory.

Response:

Due to the number of integrated technologies contributing to energy reduction and peak load reduction achieved by Integrated Volt Var Optimization (IVVO), the Company does not have a method for calculating the actual incremental benefits associated with Static Var Compensators (SVC). For additional information regarding the theory and estimated incremental benefits provided by SVCs, please refer to the Direct Testimony of Chad S. Nickell in Colorado proceeding 16A-0588E, which can be accessed at <u>https://www.dora.state.co.us/pls/efi/EFI_Search_UI.search</u>.

Preparer:	Andrew Wilson
Title:	IVVO Engineer
Department:	GV&C Delivery Team
Telephone:	303-571-3533
Date:	January 23, 2020

Xcel Energy		Information Request No.	29
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M1, p. 91 of 301.

Request:

Please explain why the Company is planning to limit the implementation of IVVO to 189 feeders.

Response:

Our IVVO proposal of 189 feeders is focused on feeders where we believe we will be able to maximize benefits in relation to the level of investment. For example, where substation communications and control equipment are already capable or can be modified at moderate cost, where substation transformers serve an average or above average number of feeders, and where the ADMS deployment will first occur. We then examined these locations to consider the likelihood of achieving benefits, which assumed that the probability for benefits is greater for systems with shorter feeders combined with higher customer density.

We believe our proposed deployment (13 substations with 189 feeders serving 224,000 customers) at a cost of \$26.6M is an appropriate deployment proposal. As we have stated in Attachment M2 of the Company's November 1, 2019 IDP filing (p. 262), as we learn more about the benefits and costs from this deployment on our NSP system, we will be better equipped to consider a broader implementation of IVVO in the future.

Preparer:	Brian D. Amundson
Title:	Director, Advanced Grid
Department:	Distribution Electric Engineering

Telephone:	715-737-4645
Date:	January 23, 2020

January 13, 2020

Xcel EnergyInformation Request No.Docket No.:E002/M-19-666Response To:Fresh EnergyRequestor:Isabel Ricker

30

Question:

Date Received:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M1, p. 179 of 301.

Request:

Please explain what levels of cost contingencies are included in the Company's AGIS bill impact analysis.

Response:

The Company included capital and O&M contingencies in our overall bill impact analysis to the extent they are included in the AGIS project budgets within the capital budget window (2019 through 2024). However, we did not specifically break out the capital contingency amount in calculating the bill impacts. That said the best method of understanding contingency in the bill impact would be to take the percentages of capital contingency in Table 9 on p. 161 of Attachment M1 and applying them to each respective project's capital addition.

Project capital contingencies are discussed at length in Attachments M1 p. 158-162, M2 p. 86-89, and M3 p. 77-81. Additionally, O&M contingency dollars are displayed in Attachments O2-O4 on the "SummaryCosts" tabs as stand-alone line-items.

Preparer:	Nick Paidosh
Title:	Principal Rate Analyst
Department:	Regulatory Affairs
Telephone:	612-342-9034
Date:	January 23, 2020
□ Not Public Document – Not For Public Disclosure

Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	31
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 73 of 202, lines 10-19.

Request:

- A. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used for the referenced calculations.
- B. Please provide a spreadsheet with all formulas and links intact containing the referenced calculations.

Response:

The calculation of reliability benefits on page 73 of Attachment M2 is related to improved identification of nested outages during storm events.

- A. We are not able to provide screen shots of the LBNL ICE calculator because we used an internally-developed tool, the Customer Minute Out (CMO) calculator, which for this set of reliability benefits, is rooted in the 2015 LBNL ICE calculator. We provide the LBNL study as Attachment A to this response, and our CMO Calculator as Attachment B. We note that we made corrections to the original LBNL study values in our Calculator, by making a final impact correction after taxes (especially influenced by the C&I customers), , which shows a CAIDI of 572 minutes, resulting in a CMO value of \$0.65.
- B. See Attachment C to this Reply.

In light of the series of Information Requests asking for CMO calculations, we note that we calculated the reliability benefits associated with different pieces of our proposal at different points in time. For example, the benefits for nested outages requested in this response used the 2015 LBNL study results. We have since updated our CMO calculator, which was a result of new information provided by LBNL and NEXANT. The updated version is based on the ICE online calculator values instead of the study; we used this later version for the FLISR benefit calculations as provided in our response to Fresh Energy Information Request Nos. 35 and 45.

Attachment B to this response is a Company work product that includes proprietary methods for calculating the value of customer minutes out. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain value from its disclosure or use, and/or contains proprietary customer and system data.

Please note Attachment B is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- 1. Nature of the Material: Model to determine value of Customer Minutes Out
- 2. Authors: Electric Distribution Engineering Department
- 3. **Importance:** The Company work product includes proprietary methods for calculating the value of customer minutes out.
- 4. Date the Information was Prepared: June 2018

Attachment C to this response is a Company work product. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from the secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain value from its disclosure or use, and/or contains proprietary customer and system data.

Please note Attachment C is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- **1. Nature of the Material:** Calculates benefits to customer for install of Advanced Metering Infrastructure
- 2. Authors: Electric Distribution Engineering Department
- **3. Importance:** The Company work product is proprietary to the Company.
- 4. Date the Information was Prepared: June 2018

Preparer:	Betsy Coppock
Title:	Principal Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3537
Date:	January 23, 2020

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 1 of 51

LBNL-6941E

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Updated Value of Service Reliability Estimates for Electric Utility Customers in the United States

Principal Authors Michael J. Sullivan, Josh Schellenberg, and Marshall Blundell Nexant, Inc.

January 2015

The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 2 of 51

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 3 of 51

Updated Value of Service Reliability Estimates for Electric Utility Customers in the United States

Michael J. Sullivan, Josh Schellenberg, and Marshall Blundell Nexant, Inc. 101 Montgomery Street, 15th Floor San Francisco, CA

The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 4 of 51

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 5 of 51

Acknowledgments

The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Joseph Paladino of the DOE Office of Electricity Delivery and Energy Reliability, and Joseph H. Eto of the Lawrence Berkeley National Laboratory for support and guidance in the development of this research. We would also like to thank Emily Fisher, Gary Fauth, Peter Larsen, Kristina Hamachi-LaCommare, Peter Cappers, and Julia Frayer for their careful reviews and comments on the earlier drafts of this report. Their comments were extremely thoughtful and useful.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 6 of 51

Abstract

This report updates the 2009 meta-analysis that provides estimates of the value of service reliability for electricity customers in the United States (U.S.). The meta-dataset now includes 34 different datasets from surveys fielded by 10 different utility companies between 1989 and 2012. Because these studies used nearly identical interruption cost estimation or willingness-topay/accept methods, it was possible to integrate their results into a single meta-dataset describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the U.S. for industrial, commercial, and residential customers. This report focuses on the backwards stepwise selection process that was used to develop the final revised model for all customer classes. Across customer classes, the revised customer interruption cost model has improved significantly because it incorporates more data and does not include the many extraneous variables that were in the original specification from the 2009 meta-analysis. The backwards stepwise selection process led to a more parsimonious model that only included key variables, while still achieving comparable out-of-sample predictive performance. In turn, users of interruption cost estimation tools such as the Interruption Cost Estimate (ICE) Calculator will have less customer characteristics information to provide and the associated inputs page will be far less cumbersome. The upcoming new version of the ICE Calculator is anticipated to be released in 2015.

Table of Contents

Acknowledgments	
Abstract	iv
Table of Contents	v
List of Figures and Tables	vii
Acronyms and Abbreviations	ix
Executive Summary	xi
Updated Interruption Cost Estimates	
Study Limitations	XİV
1. Introduction	
1.1 Recent Interruption Cost Studies	
1.2 Re-estimating Econometric Models	
1.3 Overview of Model Selection Proces	s18
1.4 Variable Definitions and Units	
1.5 Report Organization	
2 Methodology	22
2. Methodology 2.1 Model Structure	
2.2 Summary of Model Selection Proces	s 22
2.3 Details of Model Selection Process	
3 Medium and Large C&I Results	26
3.1 Final Model Selection	26
3.2 Model Coefficients	
3.3 Comparison of 2009 and 2014 Mode	l Estimates
3.4 Interruption Cost Estimates and Key	Drivers
4. Small C&I Results	
4.1 Final Model Selection	
4.2 Model Coefficients	
4.3 Comparison of 2009 and 2014 Mode	l Estimates
4.4 Interruption Cost Estimates and Key	Drivers
5 Residential Results	А1
5.1 Final Model Selection	41 41
5.2 Model Coefficients	
5.3 Comparison of 2009 and 2014 Mode	l Estimates45
5.4 Interruption Cost Estimates and Key	Drivers
6. Study Limitations	48
····· - · · · · · · · · · · · · · · · ·	

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 8 of 51

List of Figures and Tables

Table ES-1: Estimated Interruption Cost per Event, Average kW and Unserved kWh
(U.S.2013\$) by Duration and Customer Class
Table ES-2: Estimated Customer Interruption Costs (U.S.2013\$) by Duration, Timing of
Interruption and Customer Class
Table 1-1: Updated Inventory of Interruption Cost Studies in the Meta-dataset
Figure 1-1: Overview of Model Selection Process
Table 1-2: Units and Definitions of Variables for All Customer Classes
Table 1-3: Units and Definitions of Variables for C&I Customers
Table 1-4: Units and Definitions of Variables for Residential Customers
Table 3-1: Breakdown of Categorical Variables Featured in Global Model – Medium and Large
C&I
Table 3-2: Excluded Variables and Relevant Metrics from Backwards Stepwise Selection
Process – Medium and Large C&I
Table 3-3: Test Dataset Predictive Performance Metrics for Final and Initial Models – Medium
and Large C&I
Table 3-4: Regression Output for Probit Estimation – Medium and Large C&I
Table 3-5: Customer Regression Output for GLM Estimation – Medium and Large C&I
Table 3-6: Descriptive Statistics for Regression Inputs – Medium and Large C&I
Figure 3-1: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Model
(Summer Weekday Afternoon) – Medium and Large C&I
Table 3-7: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Timing of
Interruption – Medium and Large C&I
Table 3-8: Cost per Event, Average kW and Unserved kWh – Medium and Large C&I
Figure 3-2: Estimated Summer Customer Interruption Costs (U.S.2013\$) by Duration and
Industry – Medium and Large C&I
Figure 3-3: Estimated Summer Customer Interruption Costs (U.S.2013\$) by Duration and
Average Demand (kW/hr) – Medium and Large C&I
Table 4-1: Excluded Variables and Relevant Metrics from Backwards Stepwise Selection
Process – Small C&I
Table 4-2: Breakdown of Categorical Variables Featured in Final Model - Small C&I
Table 4-3: Test Dataset Predictive Performance Metrics for Final and Initial Models - Small C&I
Table 4-4: Customer Regression Output for Probit Estimation – Small C&I
Table 4-5: Customer Regression Output for GLM Estimation – Small C&I
Table 4-6: Descriptive Statistics for Regression Inputs – Small C&I
Figure 4-1: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Model
(Summer Weekday Afternoon) – Small C&I
Table 4-7: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Timing of
Interruption – Small C&I
Table 4-8: Cost per Event, Average kW and Unserved kWh-Small C&I 39
Figure 4-2: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Duration
and Industry – Small C&I
Figure 4-3: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Duration
and Average Demand (kW/hr) – Small C&I

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 10 of 51

Table 5-1: Breakdown of Categorical Variables Featured in Global Model – Residential	41
Table 5-2: Excluded Variables and Relevant Metrics from Backwards Stepwise Selection	
Process – Residential	42
Table 5-3: Test Dataset Predictive Performance Metrics for Final and Initial Models -	
Residential	43
Table 5-4: Regression Output for Probit Estimation - Residential	43
Table 5-5: Regression Output for GLM Estimation – Residential	44
Table 5-6: Descriptive Statistics for Regression Inputs – Residential	44
Figure 5-1: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Model	45
(Summer Weekday Afternoon) – Residential	45
Table 5-7: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Timing of	
Interruption – Residential	46
Table 5-8: Cost per Event, Average kW and Unserved kWh - Residential	46
Figure 5-2: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Durati	ion
and Household Income – Residential	47
Figure 5-3: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Durati	ion
and Average Demand (kW/hr) – Residential	47

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 11 of 51

Acronyms and Abbreviations

AIC	Akaike's Information Criterion
C&I	Commercial and Industrial
GLM	Generalized Linear Model
ICE	Interruption Cost Estimate
MAE	Mean Absolute Error
OLS	Ordinary Least Squares
RMSE	Root Mean Square Error

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 12 of 51

Executive Summary

In 2009, Freeman, Sullivan & Co. (now Nexant) conducted a meta-analysis that provided estimates of the value of service reliability for electricity customers in the United States (U.S.). These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major U.S. electric utilities over the 16-year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods, it was possible to integrate their results into a single meta-dataset describing the value of electric service reliability observed in all of them. The meta-analysis and its associated econometric models were summarized in a report entitled "Estimated Value of Service Reliability for Electric Utility Customers in the United States,"¹ which was prepared for Lawrence Berkeley National Laboratory (LBNL) and the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy (DOE). The econometric models were subsequently integrated into the Interruption Cost Estimate (ICE) Calculator (available at icecalculator.com), which is an online tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements (also funded by LBNL and DOE).

Since the report was finalized in June 2009 and the ICE Calculator was released in July 2011, Nexant, LBNL, DOE, and ICE Calculator users have identified several ways to improve the interruption cost estimates and the ICE Calculator user experience. These improvements include:

- Incorporating more recent utility interruption cost studies;
- Enabling the ICE Calculator to provide estimates for power interruptions lasting longer than eight hours;
- Reducing the amount of detailed customer characteristics information that ICE Calculator users must provide;
- Subjecting the econometric model selection process to rigorous cross-validation techniques, using the most recent model validation methods;² and
- Providing a batch processing feature that allows the user to save results and modify inputs.

These improvements will be addressed through this updated report and the upcoming new version of the ICE Calculator, which is anticipated to be released in 2015. This report provides updated value of service reliability estimates and details the revised econometric model, which is based on a meta-analysis that includes two new interruption cost studies. The upcoming new version of the ICE Calculator will incorporate the revised econometric model and include a batch processing feature that will allow the user to save results and modify inputs.

¹ Sullivan, M.J., M. Mercurio, and J. Schellenberg (2009). *Estimated Value of Service Reliability for Electric Utility Customers in the United States*. Lawrence Berkeley National Laboratory Report No. LBNL-2132E.

² For a discussion of these methods, see: Varian, Hal R. "Big Data: New Tricks for Econometrics." *Journal of Economic Perspectives*. Volume 28, Number 2. Spring 2014. Pages 3–28. Available here: http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.3

Updated Interruption Cost Estimates

For each customer class, Table ES-1 provides the three key metrics that are most useful for planning purposes. These metrics are:

- Cost per event (cost for an individual interruption for a typical customer³);
- Cost per average kW (cost per event normalized by average demand); and
- Cost per unserved kWh (cost per event normalized by the expected amount of unserved kWh for each interruption duration).

Cost per unserved kWh is relatively high for a momentary interruption because the expected amount of unserved kWh over a 5-minute period is relatively low.

In general, even though the econometric model has been considerably simplified, it produces similar estimates to those of the 2009 model. As in the 2009 study, medium and large C&I customers have the highest interruption costs, but when normalized by average kW, interruption costs are highest in the small C&I customer class. On both an absolute and normalized basis, residential customers experience the lowest costs as a result of a power interruption.

	(., ,						
Interruption Cost	Interruption Duration							
mierruption cost	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours		
Medium and Large C&I (Over 50,000 Annual kWh)								
Cost per Event	\$12,952	\$15,241	\$17,804	\$39,458	\$84,083	\$165,482		
Cost per Average kW	\$15.9	\$18.7	\$21.8	\$48.4	\$103.2	\$203.0		
Cost per Unserved kWh	\$190.7	\$37.4	\$21.8	\$12.1	\$12.9	\$12.7		
Small C&I (Under 50,000 An	nual kWh)	•				•		
Cost per Event	\$412	\$520	\$647	\$1,880	\$4,690	\$9,055		
Cost per Average kW	\$187.9	\$237.0	\$295.0	\$857.1	\$2,138.1	\$4,128.3		
Cost per Unserved kWh	\$2,254.6	\$474.1	\$295.0	\$214.3	\$267.3	\$258.0		
Residential	Residential							
Cost per Event	\$3.9	\$4.5	\$5.1	\$9.5	\$17.2	\$32.4		
Cost per Average kW	\$2.6	\$2.9	\$3.3	\$6.2	\$11.3	\$21.2		
Cost per Unserved kWh	\$30.9	\$5.9	\$3.3	\$1.6	\$1.4	\$1.3		

Table ES-1: Estimated	Interruption	Cost per Event,	Average	kW and	Unserved kWh
	(U.S.2013\$) by Duration and	nd Custom	er Class	

Table ES-2 shows how customer interruption costs vary by season and time of day, based on the key drivers of interruption costs that were identified in the model selection process. For medium and large C&I customers, interruption costs only meaningfully vary by season (summer vs. non-summer). For medium and large C&I customers, the cost of a summer power interruption is

³ The interruption costs in Table ES- 1 are for the average-sized customer in the meta-database. The average annual kWh usages for the respondents in the meta-database are 7,140,501 kWh for medium and large C&I customers, 19,214 kWh for small C&I customers and 13,351 kWh for residential customers.

around 21% to 43% higher than a non-summer one, depending on duration (the percent difference lowers as duration increases). For small C&I customers, the seasonal pattern is the opposite, with the cost of summer power interruptions lower by around 9% to 30%, depending on duration, season, and time of day. Small C&I interruption costs also vary by time of day, with the highest costs in the afternoon and morning. In the evening and nighttime, small C&I interruption costs are substantially lower, which makes sense given that small businesses typically operate during daytime hours. For residential customers, interruption costs are generally higher during the summer and in the morning and night (10 PM to 12 noon). The table also includes a weighted-average interruption cost estimate (equal to the cost per event estimates in Table ES-1), which is weighted by the proportion of hours of the year that each interruption cost estimate is most appropriate to use for planning purposes, unless the distribution of interruptions by season and time of day is known and accounted for in the analysis.

Table ES-2: Estimated	Customer Interruption	Costs (U.S.2013\$)	by Duration,	Timing	of
	Interruption a	and Customer Class			

	% of		l	nterruption	Duration		
Timing of Interruption	Hours per Year	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours
Medium and Large C&I							
Summer	33%	\$16,172	\$18,861	\$21,850	\$46,546	\$96,252	\$186,983
Non-summer	67%	\$11,342	\$13,431	\$15,781	\$35,915	\$77,998	\$154,731
Weighted Average	e	\$12,952	\$15,241	\$17,804	\$39,458	\$84,083	\$165,482
Small C&I							
Summer Morning	8%	\$461	\$569	\$692	\$1,798	\$4,073	\$7,409
Summer Afternoon	7%	\$527	\$645	\$780	\$1,954	\$4,313	\$7,737
Summer Evening/Night	18%	\$272	\$349	\$440	\$1,357	\$3,518	\$6,916
Non-summer Morning	17%	\$549	\$687	\$848	\$2,350	\$5,592	\$10,452
Non-summer Afternoon	14%	\$640	\$794	\$972	\$2,590	\$5,980	\$10,992
Non-summer Evening/Night	36%	\$298	\$388	\$497	\$1,656	\$4,577	\$9,367
Weighted Average	e	\$412	\$520	\$647	\$1,880	\$4,690	\$9,055
Residential							
Summer Morning/Night	19%	\$6.8	\$7.5	\$8.4	\$14.3	\$24.0	\$42.4
Summer Afternoon	7%	\$4.3	\$4.9	\$5.5	\$9.8	\$17.1	\$31.1
Summer Evening	7%	\$3.5	\$4.0	\$4.6	\$9.2	\$17.5	\$34.1
Non-summer Morning/Night	39%	\$3.9	\$4.5	\$5.1	\$9.8	\$17.8	\$33.5
Non-summer Afternoon	14%	\$2.3	\$2.7	\$3.1	\$6.2	\$12.1	\$23.7
Non-summer Evening	14%	\$1.5	\$1.8	\$2.2	\$5.0	\$10.8	\$23.6
Weighted Average	9	\$3.9	\$4.5	\$5.1	\$9.5	\$17.2	\$32.4

Study Limitations

As in the 2009 study, there are limitations to how the data from this meta-analysis should be used. It is important to fully understand these limitations, so they are further described in this section and in more detail in Section 6. These limitations are:

- Certain very important variables in the data are confounded among the studies we examined. In particular, region of the country and year of the study are correlated in such a way that it is impossible to separate the effects of these two variables on customer interruption costs;
- There is further correlation between regions and scenario characteristics. The sponsors of the interruption cost studies were generally interested in measuring interruption costs for conditions that were important for planning their specific systems. As a result, interruption conditions described in the surveys for a given region tended to focus on periods of time when interruptions were more problematic for that region;
- A further limitation of our research is that the surveys that formed the basis of the studies we examined were limited to certain parts of the country. No data were available from the northeast/mid-Atlantic region, and limited data were available for cities along the Great Lakes;
- Another caveat is that around half of the data from the meta-database is from surveys that are 15 or more years old. Although the intertemporal analysis in the 2009 study showed that interruption costs have not changed significantly over time, the outdated vintage of the data presents concerns that, in addition to the limitations above, underscore the need for a coordinated, nationwide effort that collects interruption cost estimates for many regions and utilities simultaneously, using a consistent survey design and data collection method; and
- Finally, although the revised model is able to estimate costs for interruptions lasting longer than eight hours, it is important to note that the estimates in this report are not appropriate for resiliency planning. This meta-study focuses on the direct costs that customers experience as a result of relatively short power interruptions of up to 24 hours at most. For resiliency considerations that involve planning for long duration power interruptions of 24 hours or more, the nature of costs change and the indirect, spillover effects to the greater economy must be considered.⁴ These factors are not captured in this meta-analysis.

⁴ For a detailed study and literature review on estimating the costs associated with long duration power interruptions lasting 24 hours to 7 weeks, see: Sullivan, Michael and Schellenberg, Josh. *Downtown San Francisco Long Duration Outage Cost Study*. March 27, 2013. Prepared for Pacific Gas & Electric Company.

1. Introduction

In 2009, Freeman, Sullivan & Co. (now Nexant) conducted a meta-analysis that provided estimates of the value of service reliability for electricity customers in the United States (U.S.). These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major U.S. electric utilities over the 16-year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingnessto-pay/accept methods, it was possible to integrate their results into a single meta-dataset describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the U.S. for industrial, commercial, and residential customers. The meta-analysis and its associated econometric models were summarized in a report entitled "Estimated Value of Service Reliability for Electric Utility Customers in the United States,"⁵ which was prepared for Lawrence Berkeley National Laboratory (LBNL) and the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy (DOE). The econometric models were subsequently integrated into the Interruption Cost Estimate (ICE) Calculator (available at icecalculator.com), which is an online tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements (also funded by LBNL and DOE).

Since the report was finalized in June 2009 and the ICE Calculator was released in July 2011, Nexant, LBNL, DOE, and ICE Calculator users have identified several ways to improve the interruption cost estimates and the ICE Calculator user experience. These improvements include:

- Incorporating more recent utility interruption cost studies;
- Enabling the ICE Calculator to provide estimates for power interruptions lasting longer than eight hours;
- Reducing the amount of detailed customer characteristics information that ICE Calculator users must provide;
- Subjecting the econometric model selection process to rigorous cross-validation techniques, using the most recent model validation methods;⁶ and
- Providing a batch processing feature that allows the user to save results and modify inputs.

These improvements will be addressed through this updated report and the upcoming new version of the ICE Calculator, which is anticipated to be released in 2015. This report provides updated value of service reliability estimates and details the revised econometric model, which is based on a meta-analysis that includes two new interruption cost studies. The upcoming new

⁵ Sullivan, M.J., M. Mercurio, and J. Schellenberg (2009). *Estimated Value of Service Reliability for Electric Utility Customers in the United States*. Lawrence Berkeley National Laboratory Report No. LBNL-2132E.

⁶ For a discussion of these methods, see: Varian, Hal R. "Big Data: New Tricks for Econometrics." *Journal of Economic Perspectives*. Volume 28, Number 2. Spring 2014. Pages 3–28. Available here: http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.3

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 18 of 51

version of the ICE Calculator will incorporate the revised econometric model and include a batch processing feature that will allow the user to save results and modify inputs.

1.1 Recent Interruption Cost Studies

Since conducting the meta-analysis in 2009, there have been two large interruption cost surveys in the U.S., one in the southeast and another in the west. The 2011 study in the southeast involved a systemwide interruption cost survey of over 3,300 residential and small/medium business customers and nearly 100 in-person interviews of large business customers. The 2012 study in the west involved a systemwide interruption cost survey of nearly 2,700 residential and small/medium business customers and 210 in-person interviews of large business customers. Although the basic survey methodology is similar to previous work, the 2012 interruption cost study in the west featured several noteworthy methodological improvements. In particular, a dynamic survey instrument design for that study produced interruption cost estimates from 5 minutes to 24 hours, for weekdays and weekends and across many different times of the day (morning, afternoon, evening and night). As such, incorporating the 2012 data and re-estimating the underlying econometric models will enable the ICE Calculator to estimate costs for interruptions lasting longer than 8 hours, which will address one of the improvements above.

Table 1-1 provides an updated inventory of interruption cost studies that are included in the meta-dataset. The number of observations for each study is provided along with the minimum and maximum duration of power interruption scenarios in each study. Altogether, the meta-dataset now includes 34 different datasets from surveys fielded by 10 different utility companies between 1989 and 2012, totaling over 105,000 observations.⁷ Some of the utilities surveyed all three customer types – medium and large commercial and industrial (C&I), small C&I, and residential – while others did not. In some cases there was only one dataset for C&I customers, in which case they were sorted into medium and large C&I or small C&I according to electricity usage. The split between small C&I and medium/large C&I is at 50,000 annual kWh. In total, the meta-dataset includes 44,328 observations for medium and large C&I customers, 27,751 observations for small C&I customers and 34,212 observations for residential customers. Each observation corresponds to a response for a single power interruption scenario. The surveys usually included four to six power interruption scenarios.

		Num	ber of Observa	Min	Max		
Utility Company	Survey Year	Medium and Large C&I	Small C&I	Residential	Duration (Hours)	Duration (hours)	
Southeast-1	1997	9	0		0	1	
Southoast-2	1993	3,926	1,559	3,107	0	4	
Southeast-2	1997	3,055	2,787	3,608	0	12	
Southeast-3	1990	2,095	765		0.5	4	

Table 1-1: Updated Inventory of Interruption Cost Studies in the Meta-dataset

⁷ To the knowledge of the authors, this dataset includes nearly all large power interruption cost studies that have been conducted in the US. Some studies may not have been included for data confidentiality reasons.

		Num	ber of Observa	Min Mo			
Utility Company	Survey Year	Medium and Large C&I	Small C&I	Residential	Duration (Hours)	Duration (hours)	
	2011	7,941	2,480	3,969	1	8	
Midwest-1	2002	3,1	71		0	8	
Midwest-2	1996	1,956	206		0	4	
West-1	2000	2,379	3,236	3,137	1	8	
	1989	2,025	5		0	4	
Weet 2	1993	1,790	825	2,005	0	4	
vvest-2	2005	3,052	3,223	4,257	0	8	
	2012	5,342	4,632	4,106	0	24	
Southwest	2000	3,991	2,247	3,598	0	4	
Northwest-1	1989	2,210		2,126	0.25	8	
Northwest-2	1999	7,091		4,299	0	12	

= Recently incorporated data

Prior to adding the 2012 West-2 survey, the meta-dataset included power interruption scenarios with durations of up to 12 hours. However, the 2009 model for each customer class estimated interruption costs that reached a maximum at 8 hours, and then the estimated interruption costs would decrease, which indicated that the prior model clearly did not provide reliable predictions beyond 8 hours (i.e., it is unreasonable that a 9-hour power interruption would cost less than an 8-hour one). As discussed in Sections 3 through 5, for interruptions from 8 to 16 hours, the new model produces estimates that are more reasonable and show gradually increasing costs up to 16 hours. This improvement in model performance is attributed to the addition of the 24-hour interruption scenarios (2012 West-2) and to the much simpler model specification that resulted from the rigorous selection process.

Although the revised model is able to estimate costs for interruptions lasting longer than 8 hours, it is important to note that the estimates in this report are not appropriate for resiliency planning. This meta-study focuses on the direct costs that customers experience as a result of relatively short power interruptions of up to 24 hours at most. In fact, the final models and results that are presented in Sections 3 through 5 truncate the estimates at 16 hours, due to the relatively few number of observations beyond 12 hours (scenarios of more than 12 hours account for around 2% to 3% of observations for all customer classes). For resiliency considerations that involve planning for long duration power interruptions of 24 hours or more, the nature of costs change and the indirect, spillover effects to the greater economy must be considered.⁸ These factors are not captured in this meta-analysis.

⁸ For a detailed study and literature review on estimating the costs associated with long duration power interruptions lasting 24 hours to 7 weeks, see: Sullivan, Michael and Schellenberg, Josh. *Downtown San Francisco Long Duration Outage Cost Study*. March 27, 2013. Prepared for Pacific Gas & Electric Company.

As discussed in Section 6, another caveat is that this meta-analysis may not accurately reflect current interruption costs, given that around half of the data in the meta-database is from surveys that are 15 or more years old. To address this issue, the 2009 study included an intertemporal analysis, which suggested that interruption costs did not change significantly throughout the 1990s and early 2000s. However, during the past decade in particular, technology trends may have led to an increase in interruption costs. For example, home and business life has become increasingly reliant on data centers and "cloud" computing, which may have led to an increase in interruption costs of these services. Therefore, the outdated vintage of the data presents concerns that underscore the need for a coordinated, nationwide effort that collects interruption cost estimates for many regions and utilities simultaneously, using a consistent survey design and data collection method.

1.2 Re-estimating Econometric Models

Using the new meta-dataset, Nexant re-estimated the econometric models that relate interruption costs to duration, customer characteristics such as annual kWh, and other factors. Nexant then compared the results of the original model specification to those of several alternatives that included a reduced number of variables. This model selection process addressed another ICE Calculator improvement - reducing the amount of detailed customer characteristics information that ICE Calculator users must provide, which has been a significant barrier to the tool's use. When the econometric models were originally estimated in 2009, statistical significance was the focus of the analysis and, due to the large number of observations in the meta-dataset, many of the customer characteristics variables were statistically significant in the model, even if the marginal effect of the variable was negligible and/or collinear with other variables. Basically, many of the variables in the original specification were statistically significant, but not practically significant. In re-estimating the models, Nexant focused on the practical significance of each variable by conducting sensitivity tests to determine which variables have a substantive impact on the interruption cost estimates. Nexant also employed more recent model selection methods that have been developed since 2009, which significantly improved the rigor with which variables were selected for the model. This process led to a more parsimonious model that only included key variables. In turn, ICE Calculator users will have less customer characteristics information to provide and the associated inputs page will be far less cumbersome.

1.3 Overview of Model Selection Process

Figure 1-1 provides an overview of the model selection process. The entire dataset of interruption cost estimates for each customer class is first randomly divided into a test dataset (10% of the entire dataset) and a training dataset (the remaining 90%). The training dataset is used to train the model, which refers to the process of selecting variables for the final specification. The test dataset is excluded from the model training process so that it can be used as a test of the final model performance on unseen data, which refers to data that is completely separate from the model training process. Next, the training dataset is randomly divided into 10 equally sized parts. Then, each candidate model specification is estimated on nine of 10 parts of the training dataset. The estimated coefficients for each candidate model specification are subsequently used to predict interruption costs on the tenth part of the training dataset. This process, which is referred to as 10-fold cross-validation, is repeated nine times while withholding one of the remaining nine parts of the training dataset each time. Relevant accuracy metrics for

each model specification are computed for each of the 10 parts of the training dataset. Those accuracy metrics are ranked to determine the final model specification through a backwards stepwise selection process. Next, the final model specification is run on the entire training dataset and the estimated coefficients are used to predict interruption costs for the test dataset. Relevant accuracy metrics for the test dataset are also computed. If model performance on the test dataset is similar, the final specification is then estimated on the entire dataset and those estimated coefficients make up the final model. This process is conducted for each of the three customer classes separately.

1.4 Variable Definitions and Units

There are many variables that are common among customer classes, so all variable definitions and units are provided in this section. Table 1-2 provides the units and definitions of variables that are used in the models for all customer classes.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 22 of 51

Variable Name	Variable Definition	Units
annual MWh	Annual MWh of customer	MWh
duration	Duration of power interruption scenario	Minutes
time of day	Time of day of power interruption scenario	Categorical – Morning (6 AM to 12 PM); Afternoon (12 to 5 PM; Evening (5 to 10 PM); Night (10 PM to 6 AM)
weekday	Time of week of power interruption scenario	Binary – Weekday = 1; Weekend = 0
summer	Time of year of power interruption scenario	Binary – Summer = 1; Non-summer = 0
warning	Whether power interruption scenario had advance warning	Binary – Warning = 1; No warning = 0

Table 1-2: Units and Definitions of Variables for All Customer Classes

Table 1-3 provides the units and definitions of variables that are used in the models for both the small and medium/large C&I customer classes. For both C&I customer classes, the model selection process begins with separate variables for all eight of the industry groups in the table, with Agriculture, Forestry & Fishing as the reference category by default. However, given that each industry group is tested separately for inclusion in the model, only one or two industry variables may remain in the final model, in which case the dropped industry variables are relegated to the reference category. Within the reference category, there may be multiple industries with presumably varying interruption costs, but if the model selection process has shown that there are not any meaningful differences within the industries in the reference category, those industry variables will be grouped together. The same logic applies for other categorical variables.

Table 1-3: Units and Definitions of Variables for C&I Custom
--

Variable Name	Variable Definition	Units
industry	Customer business type, based on NAICS or SIC code	Categorical – Agriculture, Forestry & Fishing; Mining; Construction; Manufacturing; Transportation, Communication & Utilities; Wholesale & Retail Trade; Finance, Insurance & Real Estate; Services; Public Administration; Unknown
backup equipment	Presence of backup equipment at facility	Categorical – None; Backup Gen or Power Conditioning; Backup Gen and Power Conditioning

Finally, Table 1-4 provides the units and definitions of variables that are only used in the residential customer models.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 23 of 51

Variable Name	Variable Definition	Units	
household income	Household income	\$	
medical equip.	Presence of medical equipment in home	Binary – Medical equipment = 1; No medical equipment = 0	
backup generation	Presence of backup generation in home	Binary – Backup = 1; No backup = 0	
outage in last 12 months	Interruption of longer than 5 minutes within past year	Binary – Yes = 1; No = 0	
# residents X-Y	Number of residents in home within X-Y age range	Number of people	
housing	Type of housing	Categorical – Detached; Attached; Apartment/Condo; Mobile; Manufactured; Unknown	

Table 1-4: Units and Definitions of Variables for Residential Customers

1.5 Report Organization

The remainder of this report proceeds as follows. Section 2 summarizes the regression modeling methodology and selection process that applies to all three customer classes – medium and large C&I, small C&I and residential. This is followed by three sections that describe the final model selection and provide the final regression coefficients for each customer class. Finally, Section 6 describes some of the study's limitations.

2. Methodology

This section summarizes the study methodology, including the regression model structure and selection process.

2.1 Model Structure

A two-part regression model was used to estimate the customer interruption cost functions (also referred to as customer damage functions). This is the same class of model used in the previous meta-study. The two-part model assumes that the zero values in the distribution of interruption costs are correctly observed zero values, rather than censored values. In the first step, a probit model is used to predict the probability that a particular customer will report any positive value versus a value of zero for a particular interruption scenario. This model is based on a set of independent variables that describe the nature of the interruption as well as customer characteristics. The predicted probabilities from this first stage are retained. In the second step, using a generalized linear model (GLM), interruption costs for only those customers who report positive costs are related to the same set of independent variables used in the first stage. Predictions are made from this model for all observations, including those with a reported interruption cost of zero. Finally, the predicted probabilities from the first part are multiplied by the estimated interruption costs from the second part to generate the final interruption cost predictions.

The functional form for the second part of the two-part model must take into account that the interruption cost distribution is bounded at zero and extremely right skewed (i.e. it has a long tail in the upper end of the distribution). Ordinary least squares (OLS) is not an appropriate functional form given these conditions. A simple way to define the customer damage function given the above constraints is to estimate the mean interruption cost, which is linked to the predictor variables through a logarithmic link function using a GLM.

The parameter values in the two-part model cannot be directly interpreted in terms of their influence on interruption costs because the relationships are among the variables in their logarithms. However, the estimated model produces a predicted interruption cost, given the values of variables in the models. To analyze the magnitude of the impact of variables in the model on interruption cost, it is necessary to compare the predictions made by the function under varying assumptions. For example, it is possible to observe the effect of duration on interruption cost by holding the other variables constant at their sample means. In this way one can predict average customer interruption costs of varying durations holding other factors constant statistically.

For a more detailed discussion of the two-part model, its functional form and the reasons why it is most appropriate for this type of data, refer to the methodology section of the 2009 report.

2.2 Summary of Model Selection Process

Nexant aimed to estimate a more parsimonious model that only included key predictor variables. This facilitates interruption cost estimation by simplifying the ICE Calculator interface and reducing the burden that ICE Calculator users face in providing numerous, accurate customer characteristics information. This section first outlines the steps involved in the model selection process that Nexant undertook, followed by a more detailed exposition of the problem at hand, and a justification for the method.

To select a more parsimonious model, Nexant conducted the following steps for each of the three customer classes:

- 1. Randomly sample 10% of the data and hold it out as the test dataset (assign other 90% as the training dataset);
- 2. Split training dataset into 10 randomly assigned, equally sized parts;
- 3. Start with the original specification (the global model) and identify model variables that are candidates for removal (all variables except ineligible lower power terms);
- 4. Remove one of the eligible model variables to yield a new model;
- 5. Estimate model on nine of 10 parts of the training dataset and retain estimates;
- 6. Use retained estimates from step 5 to predict on the tenth part of the training dataset, computing relevant accuracy metrics;
- 7. Repeat steps 5 and 6, cycling over each of the remaining 9 parts of the training dataset;
- 8. Take the average and standard deviation of the accuracy metrics from the predictions for each of 10 parts of the training dataset;
- 9. Repeat steps 4 through 8, for each possible candidate variable for removal;
- 10. Use saved accuracy metrics to rank models;
- 11. Exclude from the global model the variable, which when dropped, produced estimates that outperformed the rest;
- 12. Repeat steps 2 through 11 until only a constant remains;
- 13. Inspect results and select model that is parsimonious, yet sufficiently accurate according to the out-of-sample accuracy metrics described above; and
- 14. Test final model against the original global model using the test dataset to estimate model's performance on unseen data (ensures that the model predicts well for data that was not included in the model training process).

As discussed in Section 1, this model selection process draws from the recent model selection methods that have been developed since 2009,⁹ which significantly improves the rigor with which variables are selected for the model. The remainder of this section describes this process in more detail.

⁹ For a discussion of these methods, see: Varian, Hal R. "Big Data: New Tricks for Econometrics." *Journal of Economic Perspectives*. Volume 28, Number 2. Spring 2014. Pages 3–28. Available here: http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.3

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 26 of 51

2.3 Details of Model Selection Process

A model selection problem involves choosing a statistical model from a set of candidate models, given some data. In this case, the data were the pre-existing set of interruption cost surveys for each customer class. Nexant selected a candidate set of models that included the original model specification from the 2009 study, henceforth referred to as the global model, as well as all models that were nested in the global model, that is to say all models that occur when removing one of more predictor variables from the global model. This candidate set is appropriate for several reasons. First of all, nearly all of the variables that were available in the meta-dataset were already included in the global model. Secondly, all the variables in the global model are plausibly related to interruption costs, and are not simply spuriously correlated. For example, it is reasonable to conclude that a resident with medical equipment that requires a power supply would be willing to pay more to avoid a power interruption than a resident without such medical equipment. Similar conclusions can be made for the other predictor variables in the global model, across sectors, making all of them viable to include in candidate models. Furthermore, to introduce candidate models that feature predictors not already included in the global model, such as new characteristics or higher power terms, would make the task of selecting a more parsimonious model significantly more challenging. Adding new predictors to candidate models not only increases the complexity of those candidate models, but the number of candidate models increases exponentially, making selecting among them computationally challenging.¹⁰ It therefore makes practical sense to limit the predictors used in candidate models to those used in the global model. Also in the interest of simplifying the selection process, Nexant restricted the specifications of the probit and GLM models to be identical. This was the same form that the original regression model took.

Nexant developed an iterative process to choose among the candidate set of models. This is a backwards stepwise selection method that parses down the global model one variable at a time. At each step of the process, a variable is removed from the prior model (the global model in the first step) and the resulting model is evaluated in out-of-sample tests using a variety of metrics. This is performed for all possible variables that can be excluded, and the model that performs best on average across the various metrics is retained, or rather its exclusion is retained, and becomes the prior model in the next step of the process. (Alternatively, one can consider the excluded variable as that which diminished the performance of the global model the least, relative to the other possible exclusions, although it was often the case that the performance improved.) The outcome at each step is carefully examined to determine whether an acceptably parsimonious model has been selected, and whether excluding a particular variable will severely diminish the model's predictive power, in which case that variable is retained in the final model.

The selection process uses rigorous out-of-sample testing to evaluate the performance of various models and ensure that the final model is not over-fitted.¹¹ Nexant divided the sample into a training dataset, used to fit models; a validation dataset, used to compare models; and a test

¹⁰ It can be shown that a global model with n predictors has $2^n - 1$ possible nested models. Furthermore, when m new predictors are added to the global model, the number of possible nested models increases by $(2^m - 1)2^n$.

¹¹ Over-fitting occurs when a model describes random variation in the data. The problem manifests itself through good predictive performance on the fitted data, but poor predictive performance on unseen data that the model was not fitted to.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 27 of 51

dataset, used as a final independent test to show how well the selected model will generalize to unseen data. The test dataset comprised 10% of the sample, and was "held out" throughout the model fitting and selection process. At each step of the selection process, the models were compared using 10-fold cross-validation. Ten-fold cross-validation divides the remaining sample data into ten equal size subsamples. Nine of those subsamples are used as the training dataset to fit the model, and the tenth is used to validate the performance of that fitted model and choose among models. This process is repeated ten times with each of the subsamples used once to validate the fitted model. This method reduces the likelihood of over-fitting the model by using unseen data in the validation step; models that generalize well to new data will be selected over those that do not. Furthermore, by "folding" the data and iterating over subsamples, each observation is used exactly once in the validation step, so all of the available data (other than the 10% in the test dataset) are used to select models.

Rather than rely on a single metric to select a model, Nexant computed several metrics, ranked models by each of these metrics, then averaged the ranks to give an overall rank across metrics. Root-mean-square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R-squared) are computed in out-of-sample tests. RMSE measures the average prediction error of a model. The differences between observed and predicted values are computed, squared, and then averaged before the square root is taken to correct the units. Because errors are squared before the average, RMSE penalizes larger errors more than smaller errors. MAE also measures the average prediction error of a model. The differences between observed and predicted values are computed, their absolute value is taken, and then the absolute errors are averaged. Errors of every magnitude are penalized equally. In the case of both RMSE and MAE, values range from zero to infinity, and smaller values are preferred. R-squared measures the fraction of variation of the dependent variable that is explained by a model. Its values range from 0 to 1, and a larger value is preferred. At each step, an information theoretic approach is also used to produce a fourth ranking of models that is incorporated into the average. This ranking uses Akaike's Information Criterion (AIC), which is an estimate of the expected, relative distance between the fitted model and the unknown true mechanism that generated the observed data. It is a measure of the information that is lost when a model is used to approximate the true mechanism. A thorough exposition of the relative advantages and disadvantages of these different metrics is beyond the scope of this report. That said, by averaging the ranks obtained from each metric and choosing an overall winner, Nexant does not prioritize minimizing one kind of error over another, but rather adopts a holistic approach.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 28 of 51

3. Medium and Large C&I Results

This section summarizes the results of the model selection process and provides the model coefficients for medium and large C&I customers, which are C&I customers with annual usage of 50,000 kWh or above.

3.1 Final Model Selection

The global model for medium and large C&I customers is shown below:

Interruption Cost

```
= f(\ln(annual MWH), duration, duration^2, duration \times \ln(annual MWh), duration^2 \times \ln(annual MWh), weekday, warning, summer, industry, time of day, backup equipment)
```

Interruption cost is expressed as a function of various explanatory variables. Note that the dependent variables differ between the probit and GLM models; hence the above equation expresses the two-part model in its most general form. Industry, time of day and backup equipment are all categorical variables, and their respective categories are shown in Table 3-1 below. As is typical in indicatory coding, the first category within each categorical variable is not included explicitly as a binary variable, but rather serves as a reference category.

Table 3-1: Breakdown	of Categorical	Variables	Featured	in	Global	Model –
	Medium	and Larg	ge C&I			

Variable	Categories
industry	Agriculture, Forestry & Fishing; Mining; Construction; Manufacturing; Transportation, Communication & Utilities; Wholesale & Retail Trade; Finance, Insurance & Real Estate; Services; Public Administration; Unknown
time of day	Night (10 PM to 6 AM); Morning (6 AM to 12 PM); Afternoon (12 to 5 PM); Evening (5 to 10 PM)
backup equipment	None; Backup Gen or Power Conditioning; Backup Gen and Power Conditioning

The global model was successfully parsed down to only key variables. In selecting among variables, categorical variables were not treated as a set (either all or none removed), but rather each binary variable was removed one at a time. This allowed for a particularly important category to remain, while others that might have had a smaller effect were no longer represented. Table 3-2 shows the results of each step in the process. Each iteration represents the exclusion of a variable from the global model, and the variable listed is the one that, when excluded, produces the model with the best performance across various metrics in out-of-sample tests. The model's value and rank (relative to the other possible exclusions) in the metrics is listed, along with its overall rank, which is an average of the individual ranks. Note that iteration zero represents the global model alone, so some metrics that are only meaningful when compared with other models, such as ranks and AICs, are not listed. The highlighted row shows the final exclusion that was made; the rows that follow show the variables that remain in the final model. Ultimately, interruption costs for medium and large C&I customers can be estimated relatively accurately with a few variables and interactions representing customer usage and interruption shat occur

during the summer. A few of the 15 excluded variables show a minor improvement in predictive accuracy, but considering how difficult it can be for ICE Calculator users to find information for some of those inputs, this minor improvement in predictive accuracy was not sufficient to justify keeping those variables in the final model.

		RMS	ε	MA	E	R2		AIC			
Iteration	Excluded Variable	Value (Thousa nds)	Rank	Value (Thousa nds)	Rank	Value	Rank	Probit Value (Thousa nds)	GLM Value (Thousa nds)	Rank	Overall Rank
0	-	116	-	29.6	-	0.143	-	-	-	-	-
1	evening	116	1	29.5	1	0.148	1	44.1	589	4.5	1.9
2	weekday	116	1	29.5	2	0.150	1	44.1	589	7.0	2.8
3	morning	116	1	29.5	2	0.151	1	44.3	589	9.5	3.4
4	afternoon	116	1	29.4	1	0.153	1	44.5	589	10.0	3.3
5	wholesale & retail trade	116	2	29.4	2	0.153	2	44.5	589	4.0	2.5
6	backupgen and power conditioning	116	1	29.4	3	0.155	1	44.6	589	8.5	3.4
7	services	116	1	29.4	1	0.155	1	44.7	589	8.5	2.9
8	public administration	116	3	29.5	2	0.155	3	44.7	589	2.5	2.6
9	unknown	116	1	29.5	3	0.155	1	44.7	590	3.0	2.0
10	finance, insurance & real estate	116	1	29.5	1	0.154	1	44.7	590	4.0	1.8
11	transportation, communication & utilities	116	1	29.5	2	0.154	1	44.7	591	4.5	2.1
12	construction	116	1	29.5	1	0.154	1	44.8	591	4.5	1.9
13	mining	116	1	29.5	1	0.153	1	44.8	591	2.5	1.4
14	backupgen or power conditioning	116	1	29.5	1	0.152	1	44.8	591	1.0	1.0
15	warning	116	1	29.6	1	0.148	1	44.9	592	2.5	1.4
16	manufacturing	117	1	29.9	2	0.137	1	45.0	595	2.5	1.6
17	summer	117	1	30.0	1	0.128	1	45.4	595	1.5	1.1
18	duration ² x In(annual MWh)	119	1	30.5	1	0.106	1	45.5	595	1.0	1.0
19	duration x In(annual MWh)	120	1	30.7	1	0.096	1	45.5	595	1.0	1.0
20	duration ²	129	2	32.8	1	-0.054	2	46.2	598	1.0	1.5
21	duration	118	1	31.3	1	0.118	1	47.8	604	1.5	1.1
22	In(MWh annual)	126	1	37.4	1	0.000	1	48.7	640	1.0	1.0

Table 3-2: Excluded	Variables	and Relevant	Metrics	from	Backwards	Stepwise	Selection
		Process – Me	edium an	d Lar	ge C&I	-	

The final model for medium/large C&I customers is shown below:

Interruption Cost

= $f(\ln(annual MWH), duration, duration^2, duration \times \ln(annual MWh), duration^2 \times \ln(annual MWh), summer, industry)$

Manufacturing is the only remaining industry category in the model. Note that as categories are removed, they are relegated to the reference category, so for example the manufacturing binary variable should now be interpreted as the average impact on interruption cost associated with being in the manufacturing industry, relative to all other industries.

To confirm that the selection process did not produce an over-fitted model, and to estimate the predictive performance of the final model when evaluated on unseen data, Nexant evaluated the final model against the global model using the test dataset, which is the 10% of data that was held out from the backwards stepwise selection process. Both models were fitted to the remaining data, and then the test dataset was used to evaluate their predictive performance.

The results are shown in Table 3-3. The final model outperforms the global model in each accuracy metric.

Table 3-3: Test Dataset Predictive	Performance	Metrics for	or Final	and Initial	Models	– Medium
	and	Large C&	ЪТ			

Model	RMSE MAE (Thousands) (Thousand		R-squared			
Final	111	29.6	0.118			
Global	111	29.8	0.115			

3.2 Model Coefficients

Nexant then estimated the final two-part regression model specification on the full dataset for medium and large C&I customers. Table 3-4 describes the final probit regression model that specifies the relationship between the presence of zero interruption costs and a set of independent variables that includes interruption characteristics, customer usage, and industry designation. Although the purpose of this preliminary limited dependent variable model is only to normalize the predictions from the interruption costs regression in the second part of the two-part model, there are a few interesting results to note (these remain consistent with the original specification):

- All of the coefficients are statistically significant at a less than 1% level;
- The longer the interruption, the more likely that the costs associated with it are positive (the presence of a negative coefficient on the square of duration indicates that this effect diminishes for longer durations);
- Summer interruptions are more likely to incur costs than non-summer interruptions; and
- Manufacturing industry customers are more likely to incur costs than non-manufacturing industry customers.

Variable	Coefficient	Standard Error	P-Value
Interruption Characteristics			
duration	0.005	0.000	0.000
duration ²	-2.820E-06	0.000	0.000
summer	0.410	0.023	0.000
Customer Characteristics			
In(annual MWh)	0.118	0.006	0.000
Interactions			
duration x In(annual MWh)	-3.416E-04	0.000	0.000
duration ² x In(annual MWh)	1.640E-07	0.000	0.000
Industry			
manufacturing	0.200	0.025	0.000
Constant	-0.958	0.047	0.000

Table 3-4: Regression Output for Probit Estimation – Medium and Large C&I

Table 3-5 describes the final GLM regression model, which relates the level of interruption costs to customer usage and interruption characteristics as well as industry designation. A few results of note:

- The longer the interruption, the higher the interruption cost;
- Larger customers (in terms of annual MWh usage) incur larger costs for similar interruptions (however, interruption costs increase at a decreasing rate as usage increases);
- Manufacturing industry customers incur larger costs for similar interruptions than equivalent non-manufacturing customers;
- The difference between summer and non-summer interruption costs is statistically insignificant (all other coefficients are statistically significant).

Variable	Coefficient	Standard Error	P-Value	
Interruption Characteristics				
duration	0.006	0.001	0.000	
duration ²	-3.260E-06	0.000	0.000	
summer	0.113	0.060	0.058	
Customer Characteristics				
In(annual MWh)	0.495	0.016	0.000	
Interactions				
duration x In(annual MWh)	-1.882E-04	0.000	0.047	
duration ² x In(annual MWh)	1.480E-07	0.000	0.028	
Industry				
manufacturing	0.823	0.069	0.000	
Constant	5.292	0.127	0.000	

Table 3-5: Customer Regression Output for GLM Estimation - Medium and Large C&I

Finally, Table 3-6 shows the average values of the regression inputs for medium and large C&I customers, which are useful for modeling purposes and for assessing marginal effects. Other descriptive statistics are also provided.

Table 2 6. Decominitize	Ctatiotica	for Decreasion	Innuta Madium	and Lance	C 0-T
Table 5-0. Descriptive	Statistics	IOI Regression	mpuis – meaium	and Large	Car

Variable	N	Average	Minimum	25th Percentile	Median	75th Percentile	Maximum
Interruption Characteristics							
duration	44,328	162	0	60	60	240	1,440
duration ²	44,328	82,724	0	3,600	3,600	57,600	2,073,600
summer	44,328	86.5%	0%	100%	100%	100%	100%
Customer Characteristics							
In(annual MWh)	44,328	6.6	3.9	4.9	6.2	7.9	13.9

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 32 of 51

Variable	N	Average	Minimum	25th Percentile	Median	75th Percentile	Maximum
Interactions							
duration x In(annual MWh)	44,328	1,060	0	255	437	1,327	17,064
duration ² x In(annual MWh)	44,328	530,872	0	14,881	26,250	317,870	24,600,000
Industry			•				
manufacturing	44,328	23.3%	0%	0%	0%	0%	100%

3.3 Comparison of 2009 and 2014 Model Estimates

Figure 3-1 provides a comparison of the 2009 model estimates and the 2014 model estimates by interruption duration, in 2013 dollars. The 2014 model estimates have been extended to 16 hours because the addition of data on 24-hour power interruption scenarios has allowed to model to more reliably predict costs up to 16 hours. The magnitude of the interruption cost estimates is similar between the two models, but there is a noticeable change in the functional form, which is attributable to the addition of the longer duration scenarios and to the significant change in the model specification. The functional form is more linear and no longer levels off at 8 hours, which seems more plausible.

3.4 Interruption Cost Estimates and Key Drivers

Table 3-7 shows how medium and large C&I customer interruption costs vary by season. Considering that time of day and day of week were not important factors in the model for medium and large C&I customers, the only temporal variable to consider is season (summer or non-summer). The cost of a summer power interruption is around 21% to 43% higher than a nonsummer one, depending on duration (the percent difference lowers as duration increases). Considering that the non-summer time period (October through May) accounts for two-thirds of the year, the weighted-average interruption cost estimate is closer to the non-summer estimate. This weighted-average interruption cost estimate is most appropriate to use for planning purposes, unless the distribution of interruptions by season is known.

	interruption – Meditin and Large C&r								
Timing of	% of Hours			Interruption	Duration				
Interruption	per Year	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours		
Summer	33%	\$16,172	\$18,861	\$21,850	\$46,546	\$96,252	\$186,983		
Non-summer	67%	\$11,342	\$13,431	\$15,781	\$35,915	\$77,998	\$154,731		
Weighted Av	verage	\$12,952	\$15,241	\$17,804	\$39,458	\$84,083	\$165,482		

Table 3-7: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Timing of Interruption – Medium and Large C&I

Based on the weighted-average interruption cost estimate, Table 3-8 provides cost per event (equal to the weighted-average interruption cost), cost per average kW and cost per unserved kWh for medium and large C&I customers. Cost per unserved kWh is relatively high for a momentary interruption because the expected amount of unserved kWh over a 5-minute period is relatively low.

Table 3-8: Cost per Event, Average KW and Unserved KWn – Medium and Large Ca	Table	3-8: Cost	per Event,	Average	kW and	Unserved	kWh – Medium	and Large	C&
--	-------	-----------	------------	---------	--------	----------	--------------	-----------	----

Interruption Cost			Interruption	Duration		
Interruption Cost	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours
Cost per Event	\$12,952	\$15,241	\$17,804	\$39,458	\$84,083	\$165,482
Cost per Average kW	\$15.9	\$18.7	\$21.8	\$48.4	\$103.2	\$203.0
Cost per Unserved kWh	\$190.7	\$37.4	\$21.8	\$12.1	\$12.9	\$12.7

Figure 3-2 shows the medium and large C&I interruption costs in the summer for nonmanufacturing and manufacturing customers. As in the 2009 model, interruption costs in the manufacturing sector are relatively high. At all durations, the estimated interruption cost for manufacturing customers is more than double the cost for non-manufacturing customers. This is a key driver to consider for planning purposes – whether the planning area of interest includes medium and large C&I customers with manufacturing facilities that may be particularly sensitive to power interruptions.

Figure 3-2: Estimated Summer Customer Interruption Costs (U.S.2013\$) by Duration and Industry – Medium and Large C&I

Finally, Figure 3-3 shows the medium and large C&I interruption costs in the summer for various levels of average demand. As discussed above, medium and large C&I interruption costs increase at a decreasing rate as usage increases. This pattern is notable in the figure. Each increment in average demand represents a 5-fold increase in usage, but interruption costs only increase by a factor of 2.0 to 2.5 from one level of average demand to the next.

Figure 3-3: Estimated Summer Customer Interruption Costs (U.S.2013\$) by Duration and Average Demand (kW/hr) – Medium and Large C&I

4. Small C&I Results

This section summarizes the results of the model selection process and provides the model coefficients for small C&I customers, which are C&I customers with annual usage of less than 50,000 kWh.

4.1 Final Model Selection

The global model for small C&I customers was identical to that for the medium and large C&I customers. Refer to Section 3.1 above for a discussion of the global model specification. The global model was successfully parsed down to only key variables. In selecting among variables, categorical variables were not treated as a set (either all or none removed), but rather each binary variable was removed one at a time. This allowed for a particularly important category to remain, while others that might have had a smaller effect were no longer represented. Table 4-1 shows the results of each step in the process. Each iteration represents the exclusion of a variable from the global model, and the variable listed is the one that, when excluded, produces the model with the best performance across various metrics in out-of-sample tests. The model's value and rank (relative to the other possible exclusions) in the metrics is listed, along with its overall rank, which is an average of the individual ranks. Note that iteration zero represents the global model alone, so some metrics that are only meaningful when compared with other models, such as ranks and AICs, are not listed. The highlighted row shows the final exclusion that was made; the rows that follow show the variables that remain in the final model. Ultimately, interruption costs for small C&I customers can be estimated relatively accurately with variables representing customer usage and interruption duration, along with some binary variables for customer characteristics and interruption timing. Considering how difficult it can be for ICE Calculator users to find information for some of the 12 excluded variables (especially for small C&I customers), this final model will be much easier to use.

		RM	ISE	MAE		R2		AIC			
Iteration	Excluded Variable	Value (Thou sands)	Rank	Value (Thou sands)	Rank	Value	Rank	Probit Value (Thousa nds)	GLM Value (Thousan ds)	Rank	Overall Rank
0	-	6.17	-	1.95	-	0.044	-	-	-	-	-
1	transportation, comunication & utilities	6.16	1	1.94	2	0.048	1	30.6	245	8.0	3.0
2	mining	6.16	1	1.94	1	0.049	1	30.6	245	7.0	2.5
3	warning	6.16	1	1.94	3	0.049	1	30.6	245	4.5	2.4
4	evening	6.16	1	1.94	2	0.049	2	30.6	245	4.0	2.3
5	duration ² x In(annual MWh)	6.16	1	1.94	3	0.049	2	30.6	245	3.0	2.3
6	finance, insurance & real estate	6.16	2	1.94	4	0.049	2	30.7	245	5.5	3.4
7	unknown industry	6.16	5	1.94	2	0.049	2	30.7	245	5.5	3.6
8	duration x In(annual MWh)	6.16	3	1.94	2	0.049	2	30.7	245	1.5	2.1
9	public administration	6.16	2	1.94	3	0.049	4	30.7	245	2.0	2.8
10	weekday	6.16	2	1.94	3	0.048	3	30.7	245	3.5	2.9
11	wholesale & retail trade	6.16	1	1.94	1	0.049	1	30.9	245	7.5	2.6
12	services	6.16	2	1.94	1	0.049	3	30.9	245	2.0	2.0
13	morning	6.16	2	1.95	2	0.048	2	31.4	245	4.5	2.6
14	afternoon	6.16	1	1.95	2	0.048	1	31.5	245	3.0	1.8
15	summer	6.17	1	1.95	1	0.047	1	31.8	245	4.5	1.9
16	In(annual MWh)	6.17	1	1.96	3	0.045	1	32.0	245	3.0	2.0
17	backupgen and power conditioning	6.19	2	1.97	1	0.041	1	32.1	246	2.5	1.6
18	backupgen or power conditioning	6.20	1	1.98	1	0.036	1	32.1	246	2.0	1.3
19	manufacturing	6.22	1	2.00	2	0.029	1	32.1	246	1.5	1.4
20	construction	6.24	1	2.01	1	0.023	1	32.2	247	1.0	1.0
21	duration ²	6.52	1	2.16	1	-0.089	1	32.8	248	1.0	1.0
22	duration	6.32	1	2.13	1	-0.001	1	34.2	251	1.0	1.0

Table 4-1: Excluded	Variables	and Relevant	Metrics	from	Backwards	Stepwise	Selection
		Process –	Small Ca	&Ι			

The final model for small C&I customers is shown below:

Interruption $Cost = f(\ln(annual MWH), duration, duration², summer, industry, backup equipment, time of day)$

Industry, backup equipment and time of day are the only categorical variables remaining, and many of the categories were removed. Note that as categories are removed, they are relegated to the reference category, so for example the construction binary variable should now be interpreted as the average impact on interruption cost associated with being in the construction industry, relative to all industries other than manufacturing, which is the only other industry that was retained as a binary variable. The categories that remain in the final model are shown in Table 4-2 below.

Variable	Categories
industry	Other; Construction; Manufacturing
backup equipment	None; Backup Gen or Power Conditioning; Backup Gen and Power Conditioning
time of day	Other (5 PM to 6 AM); Morning (6 AM to 12 PM); Afternoon (12 to 5 PM)

To confirm that the selection process did not produce an overfitted model, and to estimate the predictive performance of the final model when evaluated on unseen data, Nexant evaluated the final model against the global model using the test dataset, which is the 10% of data that was held out from the backwards stepwise selection process. Both models were fitted to the remaining data, and then the test dataset was used to evaluate their predictive performance. The results are shown in Table 4-3. Note that while the global model outperforms the final model in each metric, the differences between the values are very small. The final model offers a much simpler solution with comparable performance to the global model.

Table	4-3	Test	Dataset	Predictive	Performance	Metrics	for	Final	and	Initia1	Models	– Small	C&I
Table	T - <i>J</i>	, rest	Dataset	Tructive	I CHOIManee	Mucuics	IOI	I mai	anu	muai	MOUCIS	- Sinan	Cur

Model	RMSE (Thousands)	MAE (Thousands)	R-squared
Final	5.50	1.82	0.045
Global	5.49	1.82	0.048

4.2 Model Coefficients

Nexant then estimated the final two-part regression model specification on the full dataset for residential customers. Table 4-4 describes the final probit regression model that specifies the relationship between the presence of zero interruption costs and a set of independent variables that includes interruption characteristics, customer characteristics, and industry designation. Although the purpose of this preliminary limited dependent variable model is only to normalize the predictions from the interruption costs regression in the second part of the two-part model, there are a few interesting results to note (these remain consistent with the original specification):

- All of the coefficients are statistically significant at a less than 1% level;
- The longer the interruption, the more likely that the costs associated with it are positive (the presence of a negative coefficient on the square of duration indicates that this effect diminishes for longer durations);
- Summer interruptions are more likely to incur costs than non-summer interruptions;
- Afternoon interruptions are more likely to incur costs than any other time of day; and
- Manufacturing and construction customers are more likely to incur costs than customers in other industries.

Variable	Coefficient	Standard Error	P-Value	
Interruption Characteristics				
duration	0.003	0.000	0.000	
duration ²	-1.780E-06	0.000	0.000	
summer	0.215	0.030	0.000	
morning	0.537	0.022	0.000	
afternoon	0.664	0.029	0.000	

Table 4-4: Customer Regression Output for Probit Estimation - Small C&I

Variable	Coefficient	Standard Error	P-Value
Customer Characteristics			
In(annual MWh)	0.124	0.013	0.000
backupgen or power conditioning	0.082	0.025	0.001
backupgen and power conditioning	0.272	0.059	0.000
Industry			
construction	0.261	0.054	0.000
manufacturing	0.176	0.042	0.000
Constant	-1.332	0.048	0.000

Table 4-5 describes the final GLM regression model, which relates the level of interruption costs to customer and interruption characteristics as well as industry designation. A few results of note:

- The longer the interruption, the higher the interruption cost;
- Larger customers (in terms of annual MWh usage) incur larger costs for similar interruptions (however, interruption costs increase at a decreasing rate as usage increases);
- Manufacturing and construction industry customers incur larger costs for similar interruptions than equivalent customers in other industries; and
- Summer interruptions incur lower interruption costs than other times of the year.

Table	4-5.	Customer	Regression	Output	for	GLM	Estimation	– Small	C&I
Table	4-5.	Customer	Regression	Output	IOI	ULM	Estimation	– Sman	Car

Variable	Coefficient	Standard Error	P-Value
Interruption Characteristics			
duration	0.004	0.000	0.000
duration ²	-2.160E-06	0.000	0.000
summer	-0.384	0.073	0.000
morning	-0.057	0.070	0.413
afternoon	-0.032	0.083	0.701
Customer Characteristics			
In(annual MWh)	0.069	0.035	0.046
backupgen or power conditioning	0.308	0.058	0.000
backupgen and power conditioning	0.538	0.129	0.000
Industry			
construction	0.786	0.153	0.000
manufacturing	0.587	0.104	0.000
Constant	7.000	0.135	0.000

Finally, Table 4-6 shows the average values of the regression inputs for small C&I customers, which are useful for modeling purposes and for assessing marginal effects. Other descriptive statistics are also provided.

Variable	N	Average	Minimum	25th Percentile	Median	75th Percentile	Maximum
Interruption Characteristics							
duration	27,751	191	0	60	60	240	1,440
duration ²	27,751	107,425	0	3,600	3,600	57,600	2,073,600
summer	27,751	89.3%	0%	100%	100%	100%	100%
morning	27,751	45.5%	0%	0%	0%	100%	100%
afternoon	27,751	37.6%	0%	0%	0%	100%	100%
Customer Characteristics							
In(annual MWh)	27,751	2.6	-2.0	2.2	2.8	3.3	3.9
backupgen or power conditioning	27,751	27.1%	0%	0%	0%	100%	100%
backupgen and power conditioning	27,751	3.5%	0%	0%	0%	0%	100%
Industry							
construction	27,751	4.6%	0%	0%	0%	0%	100%
manufacturing	27,751	7.8%	0%	0%	0%	0%	100%

Table 4-6: Descriptive Statistics for Regression Inputs – Small C&I

4.3 Comparison of 2009 and 2014 Model Estimates

Figure 4-1 provides a comparison of the 2009 model estimates and the 2014 model estimates by interruption duration, in 2013 dollars. The 2014 model estimates have been extended to 16 hours because the addition of data on 24-hour power interruption scenarios has allowed to model to more reliably predict costs up to 16 hours. As with medium and large C&I customers, the magnitude of the interruption cost estimates is similar between the two small C&I models, but there is a noticeable change in the functional form. This change is attributable to the addition of the longer duration scenarios and to the significant change in the model specification. The functional form is more linear and no longer levels off at 8 hours, which seems more plausible.

Figure 4-1: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Model (Summer Weekday Afternoon) – Small C&I

4.4 Interruption Cost Estimates and Key Drivers

Table 4-7 shows how small C&I customer interruption costs vary by season and time of day. The cost of a summer power interruption is around 9% to 30% lower than a non-summer one, depending on duration, season, and time of day. Interestingly, this is opposite the pattern of medium and large C&I customers, which experience higher interruption costs during the summer. As for how interruption costs vary by time of day, costs are highest in the afternoon and are similarly high in the morning. In the evening and nighttime, small C&I interruption costs are substantially lower, which makes sense given that small businesses typically operate during daytime hours. Considering that the evening/night time period (5 PM to 6 AM) accounts for a majority of the hours of the day, the weighted-average interruption cost estimate is closer to the evening/night estimates. This weighted-average interruption cost estimate is most appropriate to use for planning purposes, unless the distribution of interruptions by season and time of day is known.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 41 of 51

Table 4-7: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Timing of Interruption – Small C&I

Timing of Interruption	% of	Interruption Duration								
mining of mierruption	per Year	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours			
Summer Morning	8%	\$461	\$569	\$692	\$1,798	\$4,073	\$7,409			
Summer Afternoon	7%	\$527	\$645	\$780	\$1,954	\$4,313	\$7,737			
Summer Evening/Night	18%	\$272	\$349	\$440	\$1,357	\$3,518	\$6,916			
Non-summer Morning	17%	\$549	\$687	\$848	\$2,350	\$5,592	\$10,452			
Non-summer Afternoon	14%	\$640	\$794	\$972	\$2,590	\$5,980	\$10,992			
Non-summer Evening/Night	36%	\$298	\$388	\$497	\$1,656	\$4,577	\$9,367			
Weighted Average		\$412	\$520	\$647	\$1,880	\$4,690	\$9,055			

Based on the weighted-average interruption cost estimate, Table 4-8 provides cost per event (equal to the weighted-average interruption cost), cost per average kW, and cost per unserved kWh for small C&I customers. Cost per unserved kWh is relatively high for a momentary interruption because the expected amount of unserved kWh over a 5-minute period is relatively low.

-1000 ± 0.000 per Lyon, Average KW and Onserved KW in - Sinal Cas	Table 4-8: Cost per	Event, Average	kW and Uns	erved kWh-Si	nall C&I
---	---------------------	----------------	------------	--------------	----------

Interruption Cost	Interruption Duration								
interruption cost	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours			
Cost per Event	\$412	\$520	\$647	\$1,880	\$4,690	\$9,055			
Cost per Average kW	\$187.9	\$237.0	\$295.0	\$857.1	\$2,138.1	\$4,128.3			
Cost per Unserved kWh	\$2,254.6	\$474.1	\$295.0	\$214.3	\$267.3	\$258.0			

Figure 4-2 shows the small C&I interruption costs in the summer afternoon by industry. As in the 2009 model, interruption costs in the manufacturing and construction sectors are relatively high. At all durations, the estimated interruption cost for manufacturing and construction customers is around double or more the cost for customers in other industries. As in the medium and large C&I customer class, this is a key driver to consider for planning purposes – whether the planning area of interest includes small C&I customers with manufacturing or construction facilities that may be particularly sensitive to power interruptions.

Finally, Figure 4-3 shows the small C&I interruption costs in the summer afternoon for various levels of average demand. Small C&I interruption costs are not highly sensitive to the average demand of a customer. In the figure, each increment in average demand represents a 2-fold increase in usage, but interruption costs only increase by around 10% from one level of average demand to the next.

Figure 4-3: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Duration and Average Demand (kW/hr) – Small C&I

5. Residential Results

This section summarizes the results of the model selection process and provides the model coefficients for residential customers.

5.1 Final Model Selection

The global model for residential customers is shown below: *Interruption Cost = f(In(annual MWh), duration, duration², household income, medical equip., backup generation, summer, weekday, outage in last 12 months, # residents 0-6, # residents 7-18, # residents 19-24, # residents 25-49, # residents 50-64, # residents over 64, time of day, housing)*

Interruption cost is expressed as a function of various explanatory variables. Note that the dependent variables differ between the probit and GLM models; hence the above equation expresses the two-part model in its most general form. Time of day and housing are categorical variables, and their respective categories are shown in Table 5-1 below. As is typical in indicatory coding, the first category within each categorical variable is not included explicitly as a binary variable, but rather serves as a reference category.

Variable	Categories
time of day	Morning (6 AM to 12 PM); Afternoon (12 to 5 PM); Evening (5 to 10 PM); Late Evening/Early Morning
housing	Detached; Attached; Apartment/Condo; Mobile; Manufactured; Unknown

The global model was successfully parsed down to only key variables. In selecting among variables, categorical variables were not treated as a set (either all or none removed), but rather each binary variable was removed one at a time. This allowed for a particularly important category to remain, while others that might have had a smaller effect were no longer represented. Table 5-2 shows the results of each step in the process. Each iteration represents the exclusion of a variable from the global model, and the variable listed is the one that, when excluded, produces the model with the best performance across various metrics in out-of-sample tests. The model's value and rank (relative to the other possible exclusions) in the metrics is listed, along with its overall rank, which is an average of the individual ranks. Note that iteration zero represents the global model alone, so some metrics that are only meaningful when compared with other models, such as ranks and AICs, are not listed. The highlighted row shows the final exclusion that was made; the rows that follow show the variables that remain in the final model. Ultimately, interruption costs for residential customers can be estimated relatively accurately with variables representing customer usage, household income, and interruption duration, along with some binary variables for interruption timing. A few of the 16 excluded variables show a minor improvement in predictive accuracy, but considering how difficult it can be for ICE Calculator users to find information for some of those inputs, this minor improvement in predictive accuracy was not sufficient to justify keeping those variables in the final model.

1100055 Residential											
		RM	ISE	M/	٩E	R	2		AIC		
Iteration Excluded \	Excluded Variable	Value	Rank	Value	Rank	Value	Rank	Probit Value (Thous ands)	GLM Value (Thousa nds)	Rank	Overall Rank
0	-	16.6	-	8.50	-	0.145	-	-	-	-	-
1	late evening/early morning	16.5	1	8.49	1	0.147	1	37.3	126	9.5	3.1
2	mobile housing	16.5	3	8.48	2	0.148	3	37.3	126	3.5	2.9
3	outage in last 12 months	16.5	1	8.48	1	0.149	1	37.3	126	9.5	3.1
4	# residents 7-18 years old	16.5	1	8.48	5	0.149	1	37.3	126	6.0	3.3
5	# residents 25-49 years old	16.5	2	8.48	3	0.149	2	37.3	126	6.5	3.4
6	# residents 50-64 years old	16.5	2	8.48	2	0.149	2	37.3	126	1.0	1.8
7	manufactured housing	16.5	2	8.48	2	0.149	2	37.3	126	4.0	2.5
8	weekday	16.5	1	8.48	2	0.149	1	37.3	126	5.5	2.4
9	attached housing	16.5	1	8.48	1	0.149	1	37.4	126	5.5	2.1
10	apartment/condo	16.5	3	8.48	2	0.149	3	37.4	126	1.0	2.3
11	# residents 19-24 years old	16.5	1	8.48	2	0.149	1	37.4	126	3.5	1.9
12	backup generation	16.5	1	8.48	1	0.149	1	37.4	126	4.0	1.8
13	# residents 0-6 years old	16.5	2	8.48	2	0.149	2	37.4	126	1.5	1.9
14	unknown housing	16.5	2	8.49	1	0.148	2	37.4	126	1.5	1.6
15	medical equipment	16.5	1	8.49	2	0.148	1	37.5	126	2.5	1.6
16	# residents 65 and over	16.6	1	8.49	1	0.146	1	37.5	126	2.5	1.4
17	household income	16.6	1	8.53	1	0.140	1	37.5	127	2.5	1.4
18	evening, 5 pm to 8 pm	16.7	1	8.61	2	0.133	1	38.7	127	3.0	1.8
19	afternoon, 12 noon to 4 pm	16.7	1	8.63	1	0.127	1	38.9	127	2.0	1.3
20	summer	16.8	1	8.71	1	0.119	1	39.7	127	2.0	1.3
21	In(annual MWh)	17.0	1	8.82	1	0.098	1	39.7	128	1.5	1.1
22	duration ²	17.3	1	8.95	1	0.072	1	39.9	128	1.0	1.0
23	duration	17.9	1	9.44	1	0.000	1	41.6	130	1.0	1.0

Table 5-2: Excluded Variables and Relevant Metrics from Backwards Stepwise Selection Process – Residential

The final model for residential customers is shown below:

Interruption Cost = f(ln(annual MWh), duration, duration², household income, summer, time of day)

To confirm that the selection process did not produce an over-fitted model, and to estimate the predictive performance of the final model when evaluated on unseen data, Nexant evaluated the final model against the global model using the test dataset, which is the 10% of data that was held out from the backwards stepwise selection process. Both models were fitted to the remaining data, and then the test dataset was used to evaluate their predictive performance. The results are shown in Table 5-3. Note that while the global model outperforms the final model in each metric, the differences between the values are very small. The final model offers a much simpler solution with comparable performance to the global model.

		L	
Model	RMSE	MAE	R-squared
Final	17.5	8.34	0.148
Global	17.3	8.28	0.165

Table 5-3: Test Dataset Predictive Performance Metrics for Final and Initial Models –

5.2 Model Coefficients

Nexant then estimated the final two-part regression model specification on the full dataset for residential customers. Table 5-4 describes the final probit regression model that specifies the relationship between the presence of zero interruption costs and a set of independent variables that includes interruption characteristics and customer characteristics. Although the purpose of this preliminary limited dependent variable model is only to normalize the predictions from the interruption costs regression in the second part of the two-part model, there are a few interesting results to note (these remain consistent with the original specification):

- All of the coefficients are statistically significant at a less than 5% level;
- The longer the interruption, the more likely that the costs are positive (the presence of a negative coefficient on the square of duration indicates that this effect diminishes for longer durations);
- Customers are less likely to have a positive cost for an afternoon or an evening interruption versus any other time of day.

Variable	Coefficient	Standard Error	P-Value	
Interruption Characteristics				
duration	0.003	0.000	0.000	
duration ²	-1.130E-06	0.000	0.000	
summer	0.541	0.019	0.000	
afternoon	-0.266	0.026	0.000	
evening	-0.755	0.024	0.000	
Customer Characteristics				
In(annual MWh)	0.038	0.018	0.035	
household income	9.660E-07	0.000	0.004	
Constant	-0.266	0.051	0.000	

Table 5-4: Regression Output for Probit Estimation – Residential

Table 5-5 describes the final GLM regression model which relates the level of interruption costs to customer and interruption characteristics. A few results of note:

- All of the coefficients are statistically significant at a less than 5% level;
- The longer the interruption, the higher the interruption cost;

- Customers have lower interruption costs for afternoon and evening interruptions than for those that occur at other times of day;
- Customers experience higher costs for summer interruptions than for non-summer interruptions; and
- Larger customers (in terms of annual MWh usage) have a higher cost for similar interruptions than otherwise equivalent, smaller customers.

Variable	Coefficient	Standard Error	P-Value
Interruption Characteristics			
duration	0.002	0.000	0.000
duration ²	-9.450E-07	0.000	0.000
summer	0.161	0.029	0.000
afternoon	-0.282	0.041	0.000
evening	-0.095 0.047		0.044
Customer Characteristics			
In(annual MWh)	0.249	0.028	0.000
household income	1.850E-06	0.000	0.000
Constant	1.379	0.080	0.000

 Table 5-5: Regression Output for GLM Estimation – Residential

Finally, Table 5-6 shows the average values of the regression inputs for residential customers, which are useful for modeling purposes and for assessing marginal effects. Other descriptive statistics are also provided.

 Table 5-6: Descriptive Statistics for Regression Inputs – Residential

Variable	N	Average	Minimum	25th Percentile	Median	75th Percentile	Maximum		
Interruption Characteristics									
duration	34,212	168	0	60	60	240	1,440		
duration ²	34,212	82,198	0	3,600	3,600	57,600	2,073,600		
summer	34,212	73.4%	0%	0%	100%	100%	100%		
afternoon	34,212	48.8%	0%	0%	0%	100%	100%		
evening	34,212	29.1%	0%	0%	0%	100%	100%		
Customer Characteristics									
In(annual MWh)	34,212	2.4	0.3	1.9	2.4	2.9	4.4		
household income	34,212	69,243	5,076	36,846	63,445	97,618	173,611		

5.3 Comparison of 2009 and 2014 Model Estimates

Figure 5-1 provides a comparison of the 2009 model estimates and the 2014 model estimates by interruption duration, in 2013 dollars. The 2014 model estimates have been extended to 16 hours because the addition of data on 24-hour power interruption scenarios has allowed to model to more reliably predict costs up to 16 hours. As with C&I customers, the magnitude of the interruption cost estimates is similar between the two small C&I models, but there is a noticeable change in the functional form. This change is attributable to the addition of the longer duration scenarios and to the significant change in the model specification. The functional form is more linear and no longer levels off at 8 hours, which seems more plausible.

5.4 Interruption Cost Estimates and Key Drivers

Table 5-7 shows how residential customer interruption costs vary by season and time of day. The cost of a summer power interruption is substantially higher than a non-summer one, for all durations, seasons, and times of day. As for how interruption costs vary by time of day, costs are highest in the morning and night (10 PM to 12 noon). The weighted-average interruption cost estimate is most appropriate to use for planning purposes, unless the distribution of interruptions by season and time of day is known.

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 48 of 51

Table 5-7: Estimated Customer Interruption Costs (U.S.2013\$) by Duration and Timing of Interruption – Residential

Timing of Interruption	% of	Interruption Duration						
	per Year	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours	
Summer Morning/Night	19%	\$6.8	\$7.5	\$8.4	\$14.3	\$24.0	\$42.4	
Summer Afternoon	7%	\$4.3	\$4.9	\$5.5	\$9.8	\$17.1	\$31.1	
Summer Evening	7%	\$3.5	\$4.0	\$4.6	\$9.2	\$17.5	\$34.1	
Non-summer Morning/Night	39%	\$3.9	\$4.5	\$5.1	\$9.8	\$17.8	\$33.5	
Non-summer Afternoon	14%	\$2.3	\$2.7	\$3.1	\$6.2	\$12.1	\$23.7	
Non-summer Evening	14%	\$1.5	\$1.8	\$2.2	\$5.0	\$10.8	\$23.6	
Weighted Average		\$3.9	\$4.5	\$5.1	\$9.5	\$17.2	\$32.4	

Based on the weighted-average interruption cost estimate, Table 5-8 provides cost per event (equal to the weighted-average interruption cost), cost per average kW, and cost per unserved kWh for residential customers. Cost per unserved kWh is relatively high for a momentary interruption because the expected amount of unserved kWh over a 5-minute period is relatively low.

Interruption Cost	Interruption Duration							
	Momentary	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours		
Cost per Event	\$3.9	\$4.5	\$5.1	\$9.5	\$17.2	\$32.4		
Cost per Average kW	\$2.6	\$2.9	\$3.3	\$6.2	\$11.3	\$21.2		
Cost per Unserved kWh	\$30.9	\$5.9	\$3.3	\$1.6	\$1.4	\$1.3		

Figure 5-2 shows the residential interruption costs in the summer afternoon by levels of household income. Household income has a relatively modest impact on interruption costs. Between a household income of \$50,000 and \$100,000, the difference in interruption costs is only around 10% for all durations.

Figure 5-2: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Duration and Household Income – Residential

Finally, Figure 5-3 shows the residential interruption costs in the summer afternoon for various levels of average demand. Residential interruption costs are not highly sensitive to the average demand of a customer. In the figure, each increment in average demand represents a 2-fold increase in usage, but interruption costs only increase by around 20% from one level of average demand to the next.

Figure 5-3: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013\$) by Duration and Average Demand (kW/hr) – Residential

Docket No. E002/M-19-666 Fresh Energy IR No. 31 Attachment A Page 50 of 51

6. Study Limitations

As in the 2009 study, there are limitations to how the data from this meta-analysis should be used. It is important to fully understand these limitations, so they are further described in this section. First, certain very important variables in the data are confounded among the studies we examined. In particular, region of the country and year of the study are correlated in such a way that it is impossible to separate the effects of these two variables on customer interruption costs. Thus, for example, it is unclear whether the higher interruption cost values for the southwest are purely the result of the hot summer climate in that region or whether those costs are higher in part because of the particular economic and market conditions that prevailed during the year when the study for that region was done. The same logic applies to the 2012 west study, which was the only survey to include power interruption scenarios of more than 12 hours, which makes it difficult to separate the effect of region and year from the effect of the relatively long interruption duration.

There is further correlation between regions and scenario characteristics. The sponsors of the interruption cost studies were generally interested in measuring interruption costs for conditions that were important for planning for their specific systems. As a result, interruption conditions described in the surveys for a given region tended to focus on periods of time when interruptions were more problematic for that region. Unfortunately, the time periods when the chance of interruption scenario characteristics tended to be different in different regions. Fortunately, most of the studies we examined included a summer afternoon interruption, so we could compare that condition among studies.

A further limitation of our research is that the surveys that formed the basis of the studies we examined were limited to certain parts of the country. No data were available from the northeast/mid-Atlantic region, and limited data were available for cities along the Great Lakes. The absence of interruption cost information for the northeast/mid-Atlantic region is particularly troublesome because of the unique population density and economic intensity of that region. It is unknown whether, when weather and customer compositions are controlled, the average interruption costs from this region are different than those in other parts of the country.

Another caveat is that around half of the data from the meta-database is from surveys that are 15 or more years old. Although the intertemporal analysis in the 2009 study showed that interruption costs have not changed significantly over time, the outdated vintage of the data presents concerns that, in addition to the limitations above, underscore the need for a coordinated, nationwide effort that collects interruption cost estimates for many regions and utilities simultaneously, using a consistent survey design and data collection method.

Finally, as described in Section 1, although the revised model is able to estimate costs for interruptions lasting longer than 8 hours, it is important to note that the estimates in this report are not appropriate for resiliency planning. This meta-study focuses on the direct costs that customers experience as a result of relatively short power interruptions of up to 24 hours at most. In fact, the final models and results that are presented in Sections 3 through 5 truncate the estimates at 16 hours, due to the relatively few number of observations beyond 12 hours

(scenarios of more than 12 hours account for around 2% to 3% of observations for all customer classes). For resiliency considerations that involve planning for long duration power interruptions of 24 hours or more, the nature of costs change and the indirect, spillover effects to the greater economy must be considered.¹² These factors are not captured in this meta-analysis.

¹² For a detailed study and literature review on estimating the costs associated with long duration power interruptions lasting 24 hours to 7 weeks, see: Sullivan, Michael and Schellenberg, Josh. *Downtown San Francisco Long Duration Outage Cost Study*. March 27, 2013. Prepared for Pacific Gas & Electric Company.

Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	32
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 74 of 202, lines 7-16.

Request:

- A. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used for the referenced calculations.
- B. Please provide a spreadsheet with all formulas and links intact containing the referenced calculations.

Response:

The calculation of reliability benefits on page 74 of Attachment M2 is related to the reduction in response time for single customer events.

For both parts A and B, please see our response to Fresh Energy Information Request No. 31. Please also see Attachment A to this response, which is the 2015 version of the CMO calculator showing a CAIDI of 184 minutes resulting in a CMO value of \$0.75.

Attachment A to this response is a Company work product that includes proprietary methods for calculating the value of customer minutes out. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain value from its disclosure or use, and/or contains proprietary customer and system data.

Please note Attachment A is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- 1. Nature of the Material: Model to determine value of Customer Minutes Out
- 2. Authors: Electric Distribution Engineering Department
- 3. **Importance:** The Company work product includes proprietary methods for calculating the value of customer minutes out.
- 4. Date the Information was Prepared: June 2018

Preparer:	Betsy Coppock
Title:	Principal Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3537
Date:	January 23, 2020

Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	33
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 75 of 202, lines 4-14.

Request:

- A. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used for the referenced calculations.
- B. Please provide a spreadsheet with all formulas and links intact containing the referenced calculations.

Response:

The calculation of reliability benefits on page 75 of Attachment M2 is related to a faster response to tap level events.

For both parts A and B, please see our response to Fresh Energy Information Request No. 31. Please also see Attachment A to this response, which is the 2015 version of the CMO calculator showing a CAIDI of 271 minutes resulting in a CMO value of \$0.70.

Attachment A to this response is a Company work product that includes proprietary methods for calculating the value of customer minutes out. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain value from its disclosure or use, and/or contains proprietary customer and system data.

Please note Attachment A is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- 1. Nature of the Material: Model to determine value of Customer Minutes Out
- 2. Authors: Electric Distribution Engineering Department
- 3. **Importance:** The Company work product includes proprietary methods for calculating the value of customer minutes out.
- 4. Date the Information was Prepared: June 2018

Preparer:	Betsy Coppock
Title:	Principal Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3537
Date:	January 23, 2020

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	34
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 75 of 202, lines 18-21.

Request:

Please provide a spreadsheet with all formulas and links intact containing the referenced calculations.

Response:

The referenced calculation of reliability benefits is the sum of the benefits in Fresh Energy Information Request Nos. 31through 33. Please see our response to Fresh Energy Information Request No. 31, Attachment C.

Betsy Coppock
Principal Engineer
Electric Distribution Engineering
303.571.3537
January 23, 2020

Not Public Document – Not For Public Disclosure Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	35
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 126 of 202, lines 19-24.

Request:

Please provide a spreadsheet with all formulas and links intact supporting the potential for a 21.3 minute SAIDI reduction from FLISR.

Response:

This question references how the Company determined the feeder locations for our proposed FLISR deployment and the associated potential SAIDI reduction. Please see Attachment A to this response. Attachment A contains notes in the cells regarding derived formulas and other contextual information. We note that cell I209 contains the formula to derive the 21.3 minutes SAIDI reduction from FLISR; it is the sum of All Days CMO savings divided by the total customers of Minnesota. The number of Minnesota customers we used in this calculation was 1,257,548.

Attachment A is a portion of the Company's AGIS CBA executable model, and represents Company work product. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the model is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain value from its disclosure or use, and/or contains proprietary customer and system data. This additional trade secret data includes negotiated pricing (including labor, materials, technology, and services) and contract terms; internal labor rates; number of customers per feeder; and device retirement and failure rates.

Please note the CBA is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- **1. Nature of the Material:** A portion of the Cost Benefit Analysis Model developed by the Company.
- 2. Authors: Risk Analytics
- **3. Importance:** The Company work product is proprietary to the Company.
- **4. Date the Information was Prepared:** The CBA Model was created in the third quarter of 2019.

Preparer:	Thanh Huynh
Title:	Staff Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3544
Date:	January 23, 2020

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	36
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 133 of 202, lines 15-19.

Request:

- A. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used for the referenced calculations.
- B. Please provide a spreadsheet with all formulas and links intact containing the referenced calculations.
- C. Please explain how the Company accounted for the impact of increased momentary interruptions from FLISR when using the ICE Calculator.

Response:

This question refers to how the Company calculated the value of a reduction in CMO associated with its FLISR proposal.

- A. As discussed in our response to Fresh Energy Information Request No. 31, we developed and used the CMO calculator based on the LBNL ICE calculator to calculate benefits. The newer CMO calculator was used to calculate the CMO benefit at an individual feeder level. The CMO values differed for each feeder based on the individual feeders commercial and residential split. Each individual worksheet was not saved.
- B. See Fresh Energy Information Request No. 35 Attachment A. We derived a weighted average CMO value for each feeder. The calculation is based on the customer count of each feeder multiplied by the CMO value of the feeder and then divided by the total customer count of the sample (1,085,115). The weighted feeder average was calculated to produce a CMO value of \$0.72.
- C. The Company did not take into account the impact of increased momentary interruptions from FLISR in lieu of a sustained interruption.

Preparer:	Thanh Huynh
Title:	Staff Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3544
Date:	January 23, 2020

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	37
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 134 of 202.

Request:

Please explain what the "Scale Factor" is in Figure 16.

Response:

The term "Scale Factor" is an expected reduction in benefits due to FLISR unavailability as discussed in Attachment M2, p. 134 lines 15-17. In other documents, the term derated or deration may be substituted.

Preparer:	Betsy Coppock
Title:	Principal Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3537
Date:	January 23, 2020

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	38
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 136 of 202, lines 4-5.

Request:

A. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used for the referenced calculations.

B. Please provide a spreadsheet with all formulas and links intact containing the referenced calculations.

Response:

As explained in our response to Fresh Energy Information Request No. 31, we used our internal CMO calculator to estimate the reliability benefits associated with the reduction in patrol time.

- A. We derived a CMO value for each feeder using the calculator, using a CAIDI value of 163.06 minutes for all calculations. With the proposed FLISR scheme, a section of the feeder will still experience an outage, but the duration will be shortened since patrol will only be required on the section that is experienced the outage; we assumed a ten minute reduction for this benefit.
- B. See Fresh Energy Information Request No. 35 Attachment A. Tab "FLISRBenefits," column K shows the calculations for CMO reduction due to decreased patrol time. Columns AC to AS show the CMO value benefits through 2038.

Preparer:	Thanh Huynh
Title:	Staff Engineer
Department:	Electric Distribution Engineering

Telephone:	303.571.3544
Date:	January 23, 2020

Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	39
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2, p. 171 of 202, lines 4-10.

Request:

- A. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used for the referenced calculations.
- B. Please provide all data, analysis, studies, reports, or spreadsheets with all formulas and links intact supporting the avoided Transmission, Distribution, and Generation capacity values used in the referenced calculations.

Response:

This question refers to a projected reduction in the NSP System peak demand from IVVO.

- A. We did not use the LBNL ICE Calculator to estimate this benefit. The LBNL ICE Calculator is appropriate for calculating reliability benefits; it is not appropriate for calculating benefits associated with energy savings.
- B. We provide the requested information with all formulas, links, and calculations in the live file entitled "19-0666 CUB-002_CBA IVVO_MN_Electric_Filed_M-19-666 TRADE SECRET IN ENTIRETY.xlsx," and provided as Attachment A to this response. We note that the DSM values are those approved by the Commission in Docket No. E999/CIP-16-541. Attachment A is provided as a live file only.

Attachment A to this response is a Company work product. Xcel Energy maintains this information as a trade secret pursuant to Minn. Stat. §13.37 (1)(b) based on its economic value from not being generally known and not being readily ascertainable

by proper means by other persons who can obtain economic value from its disclosure or use. Additionally, some data contained within the work product is also maintained as trade secret based on its economic value from not being generally known and not being readily ascertainable by proper means by other persons who can obtain value from its disclosure or use, and/or contains proprietary customer and system data.

Please note Attachment A is marked as "Non-Public" in its entirety. Pursuant to Minn. R. 7829.0500, subp. 3, we provide the following description of the excised material:

- **1. Nature of the Material:** The Cost Benefit Analysis Model developed by the Company.
- 2. Authors: Risk Analytics
- 3. Importance: The Company work product is proprietary to the Company.
- 4. Date the Information was Prepared: The CBA Models were created in the third quarter of 2019.

Preparer:	Travis Majors/ Pablo Martinez	/Nick Paidosh
Title:	Sr Engineer/ Risk Analyst	/ Principal Rate
Department:	Dist Elec Eng/ Risk Mgmt	/ Regulatory
Telephone:	303-571-3817/ 303-571-7639	/ 612-342-9034
Date:	January 23, 2020	

Not Public Document – Not For Public Disclosure
 Public Document – Not Public Data Has Been Excised
 Public Document

	Information Request No.	40
E002/M-19-666		
Fresh Energy		
Isabel Ricker		
January 13, 2020		
	E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020	Information Request No. E002/M-19-666 Fresh Energy Isabel Ricker January 13, 2020

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M2.

Request:

- A. Please provide spreadsheet versions of Schedules 4-9 with all formulas and links intact.
- B. Please provide all data and analysis in spreadsheet format with all formulas and links intact supporting the values in Schedule 8.

Response:

For all requested Schedules, please refer to the live Cost-Benefit Analyses workbooks previously provided by the Company (Attachments O2-O4) as part of the non-public materials. Schedules 4-9 are individually selected lines from the "SummaryCost" and "SummaryBenefits" tabs in Attachments O2-O4. These selected lines were broken into smaller schedules based on the business area so they could be supported by the correct witnesses' rate case testimony.

Preparer:	Nick Paidosh
Title:	Principal Rate Analyst
Department:	Regulatory Affairs
Telephone:	612-342-9034
Date:	January 23, 2020

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	41
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M4, p. 18 of 50, lines 7-10.

Request:

- A. Please explain the Company's plans for transitioning from Cellnet gas meters.
- B. Please explain if and how the Company's proposed FAN could support future AMI for gas.

Response:

The Company is presently reviewing a strategy to transition from Cellnet for meter reading our gas customers. One of the options that we are exploring is to utilize the electric Advanced Metering Infrastructure (AMI) wireless mesh and its headend software for our gas meter reading/informational needs. In order to use the existing AMI headend, we would need to install modules on the gas meters that can communicate gas usage data through the Field Area Network (FAN) to the AMI headend. The AMI headend software would need to be updated to the correct functional version in order to accommodate the specific gas meter information. If we take this approach, we anticipate that we would leverage the existing FAN in areas where we have both gas and electric customers. In areas where we have gas-only customers, we are exploring options, including building additional FAN infrastructure for the gas meters to communicate with the AMI headend.

Preparer:	Jim Lash
Title:	AGIS Strategic Planning Director
Department:	AGIS
Telephone:	651-639-4421
Date:	January 23, 2020

Not Public Document – Not For Public Disclosure
 Public Document – Not Public Data Has Been Excised
 Public Document

Xcel Energy		Information Request No.	42
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment M5.

Request:

Please provide the assumed future customer participation rates in TOU and CPP programs used in the Company's CBA.

Response:

The TOU and CPP participation rates used in our analysis are estimates from the Brattle Group Study, *The Potential for Load Flexibility in Xcel Energy's Northern States Power Service Territory*, and included as Schedule 6 of Attachment M5, of the Integrated Distribution Plan.

Preparer:	Nick Paidosh/Pablo Martinez
Title:	Principal Rate/ Risk Analyst
Department:	Regulatory/ Risk Management
Telephone:	612-342-9034/303-571-7639
Date:	January 23, 2020

Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	43
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

<u>Question:</u> Reference: Xcel's November 1, 2019 Integrated Distribution Plan (IDP) Attachment N1.

Request:

Please provide the selected APT vendor's RFI responses to questions 7.22, 7.23, 7.24, and 10.6.3.

Response:

We provide the requested information in Table [FE-43] 1 below.

Table [FE-43] 1: Selected Advanced Planning Tool Vendor Responses to
Requested RFI Questions

Question	Question	Vendor Response
		[Trade Secret Begins]
7.22	Does your solution utilize hosting capacity information? If yes, describe your methodology.	
7.23	Can your solution be integrated with EPRI's DRIVE hosting tool without custom code?	
7.24	Which other hosting tool(s) does your solution integrate with?	
10.63	Please provide details of previous successful implementations with other clients.	
		[Trade Secret Ends]
Please note that portions of our response are marked as "Not Public." Certain data is considered to be "not public data" pursuant to Minn. Stat. §13.02, Subd.9, and is "Trade Secret" information pursuant to Minn. Stat. §13.37, subd. 1(b) as this data derives independent economic value, actual or potential, from not being generally known to, and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use.

Preparer:	Brian Monson
Title:	Distribution Planning Engineer
Department:	System Planning and Strategy
Telephone:	763-493-1811
Date:	January 23, 2020

Not Public Document – Not For Public Disclosure
Public Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	44
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP), Attachment O2 (AMI CBA) workpapers, tab 'RATIOOut'.

Request:

A. Please confirm that the formula in cell C7 is incorrect, the formula should be **[Trade Secret Begins]**

[Trade Secret Ends]

B. If the formula in cell C7 is incorrect, please provide corrected versions of all affected spreadsheets, testimony, and attachments reflecting the correct CBA results.

Response:

- A. We confirm that the formula in cell C7 is applied correctly. To clarify, it is referring to avoided capital investment of \$190 million. The \$221 million represents the sum of both avoided capital investment (\$190Million) and capital gains (=\$31.5 million). The capital gains amount benefit (\$31.5 million) has already been included into the Benefit/Cost Ratio, in a form of revenue requirements reductions (a cost reduction in the ratio) in cell C10. Capital Gains is defined as efficiency gains and other avoided CAP purchases, and thus applied as revenue requirement reduction. Therefore, CAP benefit to be utilized in in the ratio is \$190 million not \$221 million, so as not to double count the \$31.5 million of capital gains benefit.
- B. The formula is correct.

Please note that portions of this information request and response are marked as "Not Public." Certain data is considered to be "not public data" pursuant to Minn. Stat. §13.02, Subd.9, and is "Trade Secret" information pursuant to Minn. Stat. §13.37, subd. 1(b) as this data is derived from the Company's AGIS CBA executable model

and represents Company work product. The Company maintains this information as trade secret pursuant to Minn. Stat. § 13.37(1)(b) based on its economic value from not being generally known to, and not being readily ascertainable by proper means by other persons who can obtain economic value from its disclosure or use.

Preparer:	Pablo Martinez
Title:	Sr Principal Risk Analysist
Department:	Risk Management
Telephone:	303-571-7639
Date:	January 23, 2020

□ Not Public Document – Not For Public Disclosure

Dublic Document – Not Public Data Has Been Excised

Public Document

Xcel Energy		Information Request No.	45
Docket No.:	E002/M-19-666		
Response To:	Fresh Energy		
Requestor:	Isabel Ricker		
Date Received:	January 13, 2020		

Question:

Reference:

Xcel's November 1, 2019 Integrated Distribution Plan (IDP), Attachment O3 (FLISR CBA) workpapers, tab 'CMOFeeder'.

Request:

- A. Please explain what "normalized days" are.
- B. Please provide screenshots of the inputs to and outputs from the LBNL ICE Calculator used to calculate the values in column AV.
- C. Please provide a spreadsheet with all formulas and links intact supporting the calculation of the values in columns AX, AY, AZ, BA, and BC.

Response:

- A. Normalized Days is a term commonly used in reliability reporting to separate out days that experience large Customer Minutes Out (CMO) from "normal" days that experience a more normal amount of outages/CMO. The calculation defining normalized days and non-normalized days can be found in IEEE-1366.
- B. As discussed in our response to Fresh Energy Information Request No. 31, we use an internally-developed CMO calculator that relies on LBNL ICE data. Please see FE-31, Attachment A). Specific to this response, we derived a CMO value for each feeder using a CAIDI value of 163.06 minutes for all calculations.
- C. See FE-35 Attachment A. In tab "CMOFeeder," cell AX4, AY4, AZ4, BA4, and BC4 have notes describing the column and how the calculation was derived.

Preparer:	Thanh Huynh
Title:	Engineer
Department:	Electric Distribution Engineering
Telephone:	303.571.3544
Date:	January 23, 2020